About: Secondary cohomology operation     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : dbo:Organisation, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FSecondary_cohomology_operation

In mathematics, a secondary cohomology operation is a functorial correspondence between cohomology groups. More precisely, it is a natural transformation from the kernel of some primary cohomology operation to the cokernel of another primary operation. They were introduced by J. Frank Adams in his solution to the Hopf invariant problem. Similarly one can define tertiary cohomology operations from the kernel to the cokernel of secondary operations, and continue like this to define higher cohomology operations, as in .

AttributesValues
rdf:type
rdfs:label
  • Secondary cohomology operation (en)
rdfs:comment
  • In mathematics, a secondary cohomology operation is a functorial correspondence between cohomology groups. More precisely, it is a natural transformation from the kernel of some primary cohomology operation to the cokernel of another primary operation. They were introduced by J. Frank Adams in his solution to the Hopf invariant problem. Similarly one can define tertiary cohomology operations from the kernel to the cokernel of secondary operations, and continue like this to define higher cohomology operations, as in . (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
authorlink
  • Frank Adams (en)
first
  • J. Frank (en)
last
  • Adams (en)
year
has abstract
  • In mathematics, a secondary cohomology operation is a functorial correspondence between cohomology groups. More precisely, it is a natural transformation from the kernel of some primary cohomology operation to the cokernel of another primary operation. They were introduced by J. Frank Adams in his solution to the Hopf invariant problem. Similarly one can define tertiary cohomology operations from the kernel to the cokernel of secondary operations, and continue like this to define higher cohomology operations, as in . Michael Atiyah pointed out in the 1960s that many of the classical applications could be proved more easily using generalized cohomology theories, such as in his reproof of the Hopf invariant one theorem. Despite this, secondary cohomology operations still see modern usage, for example, in the obstruction theory of commutative ring spectra. Examples of secondary and higher cohomology operations include the Massey product, the Toda bracket, and differentials of spectral sequences. (en)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (62 GB total memory, 43 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software