About: Pascal's theorem     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Message106598915, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FPascal%27s_theorem

In projective geometry, Pascal's theorem (also known as the hexagrammum mysticum theorem) states that if six arbitrary points are chosen on a conic (which may be an ellipse, parabola or hyperbola in an appropriate affine plane) and joined by line segments in any order to form a hexagon, then the three pairs of opposite sides of the hexagon (extended if necessary) meet at three points which lie on a straight line, called the Pascal line of the hexagon. It is named after Blaise Pascal.

AttributesValues
rdf:type
rdfs:label
  • Teorema de Pascal
  • Satz von Pascal
  • Pascal's theorem
  • Teorema de Pascal
  • Théorème de Pascal
  • パスカルの定理
  • Teorema di Pascal
  • 파스칼의 정리
  • Stelling van Pascal
  • Twierdzenie Pascala
  • Teorema de Pascal
  • Теорема Паскаля
  • Теорема Паскаля
  • 帕斯卡定理
rdfs:comment
  • Il existe plusieurs théorèmes appelés théorème de Pascal.
  • In geometria, il teorema di Pascal, di Blaise Pascal, è uno dei teoremi base della teoria delle coniche. Premesso che sei punti ordinati , , , , , di una conica individuano un esagono inscritto in essa, il teorema di Pascal fornisce una condizione grafica caratteristica affinché un dato esagono sia inscrivibile in una conica.
  • パスカルの定理(パスカルのていり)は、ブレーズ・パスカルが16歳のときに発見した円錐曲線に関する定理である。 円に内接する六角形の対辺の延長線の交点は一直線上にある。更に拡張して、二次曲線上に異なる六つの点 P1 ~ P6をとると、直線 P1P2 と P4P5 の交点 Q1、P2P3 と P5P6 の交点 Q2、P3P4 と P6P1 の交点 Q3 は同一直線上にある。定理の証明の一つはうまく補助円を書くことで円の性質と三角形の相似だけで解くことができる。補助円を使わない証明も存在する。ブレーズ・パスカルの証明は歴史に残されていない。 この定理の双対、ブリアンションの定理によるとPiにおける接線と Pj における接線の交点を Rij とすると、3 直線 R12R45、R23R56、R34R61 は一点で交わる。
  • 파스칼의 정리(Pascal's theorem, -定理)는 기하학의 정리로, 프랑스의 작가, 수학자, 자연과학자인 블레즈 파스칼의 이름이 붙어 있다. 또는 신비로운 육각형(라틴어: hexagrammum mysticum 헥사그람뭄 미스티쿰[*])에 대한 정리라고도 한다. 이 정리는 유클리드 평면에서 다음과 같이 쓸 수 있다. * 어떤 원에 내접하는 육각형 ABCDEF의 변을 연장시킬 때, AB와 DE의 연장선의 교점을 M, BC와 EF의 연장선의 교점을 P, CD와 FA의 연장선의 교점을 N이라 하자. 그러면, M, N, P는 모두 한 직선 위에 놓인다. 여기서 M, N, P가 놓이는 직선을 파스칼의 직선(Pascal line)이라 한다. 일반적으로, 이 정리는 원뿐 아니라 유클리드 평면 상의 임의의 원뿔 곡선 상에서 서로 다른 점 A, B, C, D, E, F를 잡아 육각형을 만드는 경우에도 성립한다.
  • Twierdzenie Pascala – twierdzenie geometryczne udowodnione przez Blaise’a Pascala w wieku 16 lat. Twierdzenie to jest dualne w geometrii rzutowej do twierdzenia Brianchona (co oznacza, że twierdzenia te są równoważne). Najbardziej elementarny dowód twierdzenia Pascala wykorzystuje twierdzenie Menelaosa. Jego szczególnym przypadkiem jest twierdzenie Pappusa.
  • Теоре́ма Паска́ля — классическая теорема проективной геометрии.
  • 帕斯卡定理指圆锥曲线的内接六边形其三条对边的交点共线。它与布列安桑定理对偶,是帕普斯定理的推广。(當這個圓錐曲線退化成兩條直線時,帕斯卡定理就會變成帕普斯定理) 该定理由法国数学家布莱士·帕斯卡于16岁时提出但並未證明,是射影几何中的一个重要定理。
  • Теорема Паскаля — теорема проєктивної геометрії, яка свідчить, що Теорема Паскаля двоїста до теореми Бріаншона.
  • El teorema de Pascal (també anomenat Hexagrammum Mysticum Theorema) és un fonamental teorema de la geometria projectiva en què s'estableix que si un hexàgon arbitrari es troba inscrit en alguna secció cònica, i s'estenen els parells oposats de costats fins que es creuen, els tres punts en els quals s'intersecten es trobaran ubicats sobre una línia recta, anomenada la línia de Pascal d'aquesta configuració. El teorema de Pascal va ser generalitzat per Möbius el 1847.
  • Der Satz von Pascal (nach Blaise Pascal) ist eine Aussage über ein 6-Eck auf einem nicht ausgearteten Kegelschnitt in einer projektiven Ebene. Er lässt sich in der reellen affinen Ebene wie folgt formulieren: Für ein 6-Eck auf einer Ellipse bei dem zwei Paare gegenüberliegender Seiten parallel sind (im Bild ), ist auch das dritte Paar gegenüberliegender Seiten parallel (im Bild: ). Betrachtet man diesen Satz in dem projektiven Abschluss einer affinen Ebene (man nimmt die "Ferngerade", auf der sich parallele Geraden schneiden, hinzu), so gilt: auf einer Gerade, der Pascal-Gerade (s. Bild).
  • In projective geometry, Pascal's theorem (also known as the hexagrammum mysticum theorem) states that if six arbitrary points are chosen on a conic (which may be an ellipse, parabola or hyperbola in an appropriate affine plane) and joined by line segments in any order to form a hexagon, then the three pairs of opposite sides of the hexagon (extended if necessary) meet at three points which lie on a straight line, called the Pascal line of the hexagon. It is named after Blaise Pascal.
  • En el ámbito de la geometría proyectiva, el teorema de Pascal (también denominado Hexagrammum Mysticum Theorem) establece que: En su configuración más clásica, el teorema se suele visualizar sobre un hexágono cíclico inscrito en una elipse (es decir, con sus vértices unidos correlativamente en el orden en que aparecen al recorrer la cónica). Sin embargo, el teorema también se cumple sea cual sea el orden en el que se conecten los seis puntos (de acuerdo con el concepto de hexágono ARBITRARIO que se incluye en el enunciado del teorema). De igual manera, se cumple para cualquier cónica (como es bien sabido, recta, circunferencia, elipse, parábola o hipérbola).
  • De stelling van Pascal is een stelling uit de meetkunde, genoemd naar haar ontdekker Blaise Pascal (1623-1662). Neem een willekeurige zeshoek, die ligt ingeschreven in een kegelsnede en waarvan de drie paren van tegenoverliggende zijlijnen elkaar alle drie snijden. Hiermee zijn drie snijpunten van steeds twee lijnen bepaald. Deze drie punten liggen op één lijn. Pascal bewees de stelling in 1639, hij was toen amper 16 jaar, nadat hij in contact was gekomen met Desargues (1591-1661). Hij publiceerde de stelling in 1640 op één blad papier, maar zijn manuscript hierover is nooit teruggevonden.
  • Em geometria projetiva, o teorema de Pascal (formulado por Blaise Pascal quando tinha apenas 16 anos de idade) determina que num hexágono inscrito em uma cónica, as retas que contiverem os lados opostos interceptam-se em pontos colineares, ou seja se os seis vértices de um hexágono estão situados sobre uma circunferência e os três pares de lados opostos se intersectam, os três pontos de intersecção são colineares.
foaf:depiction
  • External Image
foaf:isPrimaryTopicOf
thumbnail
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software