About: Higher-order logic     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Method105660268, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FHigher-order_logic

In mathematics and logic, a higher-order logic is a form of predicate logic that is distinguished from first-order logic by additional quantifiers and, sometimes, stronger semantics. Higher-order logics with their standard semantics are more expressive, but their model-theoretic properties are less well-behaved than those of first-order logic.

AttributesValues
rdf:type
rdfs:label
  • Logika vyššího řádu
  • Logik höherer Stufe
  • Λογική ανώτερου βαθμού
  • Higher-order logic
  • Logique d'ordre supérieur
  • 高階述語論理
  • 고차 논리
  • Lógica de ordem superior
  • Логика высшего порядка
  • 高阶逻辑
rdfs:comment
  • Les logiques d'ordre supérieur sont des logiques formelles permettant d'utiliser des variables qui réfèrent à des fonctions ou à des prédicats. Elles étendent le calcul des prédicats.
  • 고차 논리(高次論理, 영어: higher-order logic)는 관계 또는 관계의 관계 등을 지칭하는 변수에 전칭·존재 기호를 가할 수 있는 일련의 논리 체계들이다. 모든 고차 논리는 ω차 논리(ω次論理, 영어: ω-order logic)의 부분 논리 체계로 생각할 수 있다.:Chapter 5, §50
  • 高階述語論理(こうかいじゅつごろんり、英: Higher-order logic)は、一階述語論理と様々な意味で対比される用語である。 例えば、その違いは量化される変項の種類にも現われている。一階述語論理では、大まかに言えば述語に対する量化ができない。述語を量化できる論理体系については二階述語論理に詳しい。 その他の違いとして、基盤となる型理論で許されている型構築の違いがある。高階述語(higher-order predicate)とは、引数として1つ以上の別の述語をとることができる述語である。一般に n 階の高階述語の引数は1つ以上の (n − 1) 階の述語である(ここで n > 1)。同じことは高階関数(higher-order function)にも言える。 高階述語論理は表現能力が高いが、その特性、特にモデル理論に関わる部分では、多くの応用について性格が良いとは言えない。クルト・ゲーデルの業績により、古典的高階述語論理は(帰納的に公理化された)健全で完全な証明計算が認められないとされた。しかし、Henkin model によれば、健全で完全な証明計算は存在する。 高階述語論理の例として、アロンゾ・チャーチの Simple Theory of Types や Calculus of Constructions (CoC) がある。
  • 在数学中,高阶逻辑在很多方面有别于一阶逻辑。 其一是变量类型出现在量化中;粗略的说,一阶逻辑中禁止量化谓词。允许这么做的系统请参见二阶逻辑。 高阶逻辑区别于一阶逻辑的其他方式是在构造中允许下层的类型论。高阶谓词是接受其他谓词作为参数的谓词。一般的,阶为n的高阶谓词接受一个或多个(n − 1)阶的谓词作为参数,这里的n > 1。对高阶函数类似的评述也成立。 高阶逻辑更加富有表达力,但是它们的性质,特别是有关模型论的,使它们对很多应用不能表现良好。作为哥德尔的结论,经典高阶逻辑不容许(递归的公理化的)可靠的和完备的;这个缺陷可以通过使用模型来修补。 高阶逻辑的一个实例是构造演算。
  • V matematice se logika vyššího řádu odlišuje od predikátové logiky prvního řádu několika způsoby. Jeden z nich je typ , přes které se kvantifikuje; v logice prvního řádu se kvantifikuje pouze pro proměnné pro individua a nelze kvantifikovat (volně řečeno) přes proměnné pro predikátové symboly. To lze v a dalších systémech. Příklady logik vyšších řádů jsou Churchova jednoduchá teorie typů (angl. 'Simple Theory of Types') a (angl. 'calculus of constructions').
  • Unter Logik höherer Stufe (englisch Higher-Order Logic, HOL), auch Stufenlogik, versteht man eine Erweiterung der Prädikatenlogik erster Stufe.Sie basiert auf dem typisierten Lambda-Kalkül und geht auf Alonzo Churchs Theory of Simple Types zurück.
  • Στα μαθηματικά και τη λογική, μία λογική ανώτερου βαθμού ή λογική ανώτερης τάξης (higher-order logic) διακρίνεται από μία λογική πρώτου βαθμού με βάση αρκετά χαρακτηριστικά. Ένα από αυτά είναι ο τύπος των μεταβλητών που εμφανίζονται στους ποσοδείκτες: γενικά, στην πρωτοβάθμια λογική, απαγορεύεται οι ποσοδείκτες να αναφέρονται σε κατηγορήματα, ενώ αυτό επιτρέπεται στη . Η λογική ανώτερου βαθμού διαφέρει επίσης από τη λογική πρώτου βαθμού στις δομές που η θεωρία τύπων της επιτρέπει να κατασκευάζονται. Ένα κατηγόρημα ανώτερου βαθμού είναι ένα κατηγόρημα που δέχεται σαν παραμέτρους κατηγορήματα. Γενικά, ένα κατηγόρημα βαθμού n παίρνει ένα ή περισσότερα κατηγορήματα βαθμού n − 1 σαν παραμέτρους, όπου n > 1. Παρόμοια ισχύουν και για τις συναρτήσεις ανώτερης τάξης.
  • In mathematics and logic, a higher-order logic is a form of predicate logic that is distinguished from first-order logic by additional quantifiers and, sometimes, stronger semantics. Higher-order logics with their standard semantics are more expressive, but their model-theoretic properties are less well-behaved than those of first-order logic.
  • Na matemática e na lógica, uma lógica de ordem superior é uma forma de lógica de predicados que se distingue da lógica deprimeira ordem por permitir a presença de quantificadores sobre predicados, e por possuir uma semântica mais forte. Lógicas desse tipo, com sua semântica padrão, são mais expressivas, mas suas propriedades na teoria dos modelos são "menos bem-comportadas" do que as da lógica de primeira ordem em relação a certas aplicações.
  • Логика высшего порядка в математике и логике — форма предикатной логики, которая отличается от логики первого порядка дополнительными кванторами, а также более сильной семантикой. Логики высшего порядка с их стандартными семантиками более выразительны, но их модельно-теоретические свойства менее «хорошие» по сравнению с логикой первого порядка. Логика первого порядка квантифицирует только переменные; логика второго порядка допускает также квантификацию над множествами; логика третьего порядка квантифицирует и множества множеств, и так далее. Например, предложение второго порядка
foaf:isPrimaryTopicOf
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • V matematice se logika vyššího řádu odlišuje od predikátové logiky prvního řádu několika způsoby. Jeden z nich je typ , přes které se kvantifikuje; v logice prvního řádu se kvantifikuje pouze pro proměnné pro individua a nelze kvantifikovat (volně řečeno) přes proměnné pro predikátové symboly. To lze v a dalších systémech. Další vlastnost, kterou se logika vyššího řádu liší od logiky prvního řádu, jsou dovolené konstrukce v typové teorii, na které je (případně) založena. Predikát vyššího řádu je takový predikát, který má jeden nebo víc jiných predikátů jako argumenty. Obecně, predikát vyššího řádu, který má řád n, má jeden nebo víc predikátů řádu (n − 1) jako svoje argumenty (pro n > 1). Podobnou vlastnost mají funkce vyšších řádů, běžně využívané ve funkcionálním programování Logiky vyšších řádů mají větší vyjadřovací sílu, ale kvůli svým vlastnostem, zvláště vzhledem k teorii modelů, mají méně vhodné chování pro mnoho aplikací. Gödel dokázal, že klasická logika vyššího řádu nedovoluje (rekurzivně ) korektní a úplný . Ale existuje takový důkazový systém, který je korektní a úplný vzhledem k Henkinovým modelům. Příklady logik vyšších řádů jsou Churchova jednoduchá teorie typů (angl. 'Simple Theory of Types') a (angl. 'calculus of constructions').
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software