rdfs:comment
| - En mecánica cuántica, existen diversas formas de presentar las ecuaciones de movimiento de un sistema. En la imagen de Schrödinger la evolución temporal del mismo afecta al estado cuántico que lo representa. Es la manera «estándar» de introducir las ecuaciones de la mecánica cuántica. Por el contrario, en la imagen de Heisenberg dicha evolución afecta únicamente a los operadores que representan las cantidades observables. Mediante esta imagen se pueden analizar las similitudes entre las ecuaciones de movimiento clásicas y cuánticas. La imagen de interacción (también de Dirac o de Dyson) es un enfoque intermedio entre los dos anteriores, utilizado en teoría de perturbaciones. Las predicciones físicas de la mecánica cuántica no dependen de la imagen que se utilice. (es)
- Теорія зображень — розділ квантової механіки, в якому розглядаються різні форми подання основних квантовомеханічних рівнянь. Теорія зображень розроблена Полем Діраком. При розв'язку квантово-механічних задач використовуються різні зображення, виходячи з міркувань зручності. Серед найвідоміших із них: координатне зображення, імпульсне зображення, енергетичне зображення, картина Шредінгера, картина Гейзенберга, картина взаємодії, зображення чисел заповнення тощо. (uk)
- In quantum mechanics, dynamical pictures (or representations) are the multiple equivalent ways to mathematically formulate the dynamics of a quantum system. The two most important ones are the Heisenberg picture and the Schrödinger picture. These differ only by a basis change with respect to time-dependency, analogous to the Lagrangian and Eulerian specification of the flow field: in short, time dependence is attached to quantum states in the Schrödinger picture and to operators in the Heisenberg picture. (en)
- Obrazy w mechanice kwantowej. Rozwiązując równanie Schrödingera niezależne od czasu, otrzymuje się wektor stanu przedstawiający stan układu kwantowego w pewnej chwili początkowej Pełny wektor stanu otrzymuje się, rozwiązując równanie Schrödingera zależne od czasu. Jeżeli hamiltonian układu nie zależy od czasu, to istnieje prosta zależność Gdy jednak hamiltonian zależy od czasu, to rozwiązanie równania Schrödingera staje się trudniejsze. (2) obraz Heisenberga – jedynie operatory zmieniają się w czasie, (pl)
|