In geometric topology, the dogbone space, constructed by R. H. Bing, is a quotient space of three-dimensional Euclidean space such that all inverse images of points are points or , yet it is not homeomorphic to . The name "dogbone space" refers to a fanciful resemblance between some of the diagrams of genus 2 surfaces in R. H. Bing's paper and a dog bone. showed that the product of the dogbone space with is homeomorphic to . Although the dogbone space is not a manifold, it is a and a .
Attributes | Values |
---|---|
rdf:type | |
rdfs:label |
|
rdfs:comment |
|
dct:subject | |
Wikipage page ID |
|
Wikipage revision ID |
|
Link from a Wikipage to another Wikipage | |
Link from a Wikipage to an external page | |
sameAs | |
dbp:wikiPageUsesTemplate | |
authorlink |
|
first |
|
last |
|
year |
|
has abstract |
|
gold:hypernym | |
prov:wasDerivedFrom | |
page length (characters) of wiki page |
|
foaf:isPrimaryTopicOf | |
is Link from a Wikipage to another Wikipage of | |
is Wikipage redirect of | |
is foaf:primaryTopic of |