About: Bunce–Deddens algebra     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FBunce%E2%80%93Deddens_algebra

In mathematics, a Bunce–Deddens algebra, named after and , is a certain type of , a direct limit of matrix algebras over the continuous functions on the circle, in which the connecting maps are given by embeddings between families of shift operators with periodic weights. It is also known that, in general, crossed products arising from minimal homeomorphism on the Cantor set are simple AT-algebras of real rank zero.

AttributesValues
rdfs:label
  • Bunce–Deddens algebra (en)
rdfs:comment
  • In mathematics, a Bunce–Deddens algebra, named after and , is a certain type of , a direct limit of matrix algebras over the continuous functions on the circle, in which the connecting maps are given by embeddings between families of shift operators with periodic weights. It is also known that, in general, crossed products arising from minimal homeomorphism on the Cantor set are simple AT-algebras of real rank zero. (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In mathematics, a Bunce–Deddens algebra, named after and , is a certain type of , a direct limit of matrix algebras over the continuous functions on the circle, in which the connecting maps are given by embeddings between families of shift operators with periodic weights. Each inductive system defining a Bunce–Deddens algebra is associated with a supernatural number, which is a complete invariant for these algebras. In the language of K-theory, the supernatural number correspond to the K0 group of the algebra. Also, Bunce–Deddens algebras can be expressed as the C*-crossed product of the Cantor set with a certain natural minimal action known as an odometer action. They also admit a unique tracial state. Together with the fact that they are AT, this implies they have real rank zero. In a broader context of the classification program for simple separable nuclear C*-algebras, AT-algebras of real rank zero were shown to be completely classified by their K-theory, the Choquet simplex of tracial states, and the natural pairing between K0 and traces. The classification of Bunce–Deddens algebras is thus a precursor to the general result. It is also known that, in general, crossed products arising from minimal homeomorphism on the Cantor set are simple AT-algebras of real rank zero. (en)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is Wikipage disambiguates of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (61 GB total memory, 51 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software