In machine learning, multi-label classification or multi-output classification is a variant of the classification problem where multiple nonexclusive labels may be assigned to each instance. Multi-label classification is a generalization of multiclass classification, which is the single-label problem of categorizing instances into precisely one of several (more than two) classes. In the multi-label problem the labels are nonexclusive and there is no constraint on how many of the classes the instance can be assigned to.
Attributes | Values |
---|
rdf:type
| |
rdfs:label
| - Classificazione multi-etichetta (it)
- Multi-label classification (en)
|
rdfs:comment
| - In machine learning, multi-label classification or multi-output classification is a variant of the classification problem where multiple nonexclusive labels may be assigned to each instance. Multi-label classification is a generalization of multiclass classification, which is the single-label problem of categorizing instances into precisely one of several (more than two) classes. In the multi-label problem the labels are nonexclusive and there is no constraint on how many of the classes the instance can be assigned to. (en)
- Nell'apprendimento automatico la classificazione multi-etichetta è una variante del problema della classificazione che ammette per ogni istanza l'assegnazione di più di una etichetta-obiettivo. La classificazione multi-etichetta non deve essere confusa con la , che è invece il problema di categorizzare le istanze in una sola tra più di due classi. Ci sono due metodi principali per affrontare il problema della classificazione multi-etichetta:
* i metodi di trasformazione del problema;
* i metodi di adattamento degli algoritmi. (it)
|
differentFrom
| |
dcterms:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
Link from a Wikipage to an external page
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
has abstract
| - In machine learning, multi-label classification or multi-output classification is a variant of the classification problem where multiple nonexclusive labels may be assigned to each instance. Multi-label classification is a generalization of multiclass classification, which is the single-label problem of categorizing instances into precisely one of several (more than two) classes. In the multi-label problem the labels are nonexclusive and there is no constraint on how many of the classes the instance can be assigned to. Formally, multi-label classification is the problem of finding a model that maps inputs x to binary vectors y; that is, it assigns a value of 0 or 1 for each element (label) in y. (en)
- Nell'apprendimento automatico la classificazione multi-etichetta è una variante del problema della classificazione che ammette per ogni istanza l'assegnazione di più di una etichetta-obiettivo. La classificazione multi-etichetta non deve essere confusa con la , che è invece il problema di categorizzare le istanze in una sola tra più di due classi. Ci sono due metodi principali per affrontare il problema della classificazione multi-etichetta:
* i metodi di trasformazione del problema;
* i metodi di adattamento degli algoritmi. Ci sono diversi metodi di trasformazione del problema per la classificazione multi-etichetta: una in comune è la rilevanza binaria dove un classificatore binario è allenato per l'etichetta. Un altro metodo è la trasformazione di combinazioni di etichetta che crea un classificatore binario per ogni possibile combinazione di etichetta; il RAkEL e le catene di classificatori. I metodi di trasformazione del problema sviluppati sono: il Ml-kNN, variante dei classificatori K-nearest neighbors. (it)
|
gold:hypernym
| |
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is differentFrom
of | |
is Link from a Wikipage to another Wikipage
of | |
is Wikipage redirect
of | |
is foaf:primaryTopic
of | |