About: Dirac–Kähler equation     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FDirac%E2%80%93Kähler_equation&graph=http%3A%2F%2Fdbpedia.org&graph=http%3A%2F%2Fdbpedia.org

In theoretical physics, the Dirac–Kähler equation, also known as the Ivanenko–Landau–Kähler equation, is the geometric analogue of the Dirac equation that can be defined on any pseudo-Riemannian manifold using the Laplace–de Rham operator. In four-dimensional flat spacetime, it is equivalent to four copies of the Dirac equation that transform into each other under Lorentz transformations, although this is no longer true in curved spacetime. The geometric structure gives the equation a natural discretization that is equivalent to the staggered fermion formalism in lattice field theory, making Dirac–Kähler fermions the formal continuum limit of staggered fermions. The equation was discovered by Dmitri Ivanenko and Lev Landau in 1928 and later rediscovered by Erich Kähler in 1962.

AttributesValues
rdfs:label
  • Dirac–Kähler equation (en)
rdfs:comment
  • In theoretical physics, the Dirac–Kähler equation, also known as the Ivanenko–Landau–Kähler equation, is the geometric analogue of the Dirac equation that can be defined on any pseudo-Riemannian manifold using the Laplace–de Rham operator. In four-dimensional flat spacetime, it is equivalent to four copies of the Dirac equation that transform into each other under Lorentz transformations, although this is no longer true in curved spacetime. The geometric structure gives the equation a natural discretization that is equivalent to the staggered fermion formalism in lattice field theory, making Dirac–Kähler fermions the formal continuum limit of staggered fermions. The equation was discovered by Dmitri Ivanenko and Lev Landau in 1928 and later rediscovered by Erich Kähler in 1962. (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
title
  • Dirac–Kähler equation (en)
has abstract
  • In theoretical physics, the Dirac–Kähler equation, also known as the Ivanenko–Landau–Kähler equation, is the geometric analogue of the Dirac equation that can be defined on any pseudo-Riemannian manifold using the Laplace–de Rham operator. In four-dimensional flat spacetime, it is equivalent to four copies of the Dirac equation that transform into each other under Lorentz transformations, although this is no longer true in curved spacetime. The geometric structure gives the equation a natural discretization that is equivalent to the staggered fermion formalism in lattice field theory, making Dirac–Kähler fermions the formal continuum limit of staggered fermions. The equation was discovered by Dmitri Ivanenko and Lev Landau in 1928 and later rediscovered by Erich Kähler in 1962. (en)
background colour
  • #ECFCF4 (en)
border colour
  • #50C878 (en)
indent
  • : (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is known for of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 59 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software