About: Dirac spinor     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)

In quantum field theory, the Dirac spinor is the spinor that describes all known fundamental particles that are fermions, with the possible exception of neutrinos. It appears in the plane-wave solution to the Dirac equation, and is a certain combination of two Weyl spinors, specifically, a bispinor that transforms "spinorially" under the action of the Lorentz group.

AttributesValues
rdfs:label
  • Dirac-Spinor
  • Dirac spinor
  • Spinore di Dirac
  • ディラック・スピノル
  • 狄拉克旋量
rdfs:comment
  • 自由粒子のディラック方程式の解は、以下の平面波の形式を持つ: ここで、 は4成分スピノル (ディラック・スピノル) であり、 を変数とする関数ではない。 このスピノルは以下のように書き下せる: ここで、 は2成分スピノル はパウリ行列 はそれぞれエネルギー、質量、粒子の四元運動量(four-momentum) を示す。
  • In fisica lo spinore di Dirac è un "vettore" a quattro componenti ma non è un quadrivettore poiché non si trasforma come tale. Esso è soluzione dell'equazione di Dirac le cui componenti sono funzioni d'onda.
  • 量子場論中,狄拉克旋量(英語:Dirac spinor)為一,出現在自由粒子狄拉克方程式的平面波解中: ; 自由粒子的狄拉克方程式為: 其中(採用自然單位制) 為相對論性自旋½場,是狄拉克旋量,與波向量為的平面波有關,,為平面波的四維波向量,而為任意的,為一給定慣性系中的四維空間座標。 正能量解所對應的狄拉克旋量為 其中 為任意的雙旋量,為包立矩陣,為正根號
  • In quantum field theory, the Dirac spinor is the spinor that describes all known fundamental particles that are fermions, with the possible exception of neutrinos. It appears in the plane-wave solution to the Dirac equation, and is a certain combination of two Weyl spinors, specifically, a bispinor that transforms "spinorially" under the action of the Lorentz group.
foaf:isPrimaryTopicOf
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In quantum field theory, the Dirac spinor is the spinor that describes all known fundamental particles that are fermions, with the possible exception of neutrinos. It appears in the plane-wave solution to the Dirac equation, and is a certain combination of two Weyl spinors, specifically, a bispinor that transforms "spinorially" under the action of the Lorentz group. Dirac spinors are important and interesting in numerous ways. Foremost, they are important as they do describe all of the known fundamental particle fermions in nature; this includes the electron and the quarks. Algebraically they behave, in a certain sense, as the "square root" of a vector. This is not readily apparent from direct examination, but it has slowly become apparent over the last 60 years that spinorial representations are fundamental to geometry. For example, effectively all Riemannian manifolds can have spinors and spin connections built upon them, via the Clifford algebra. The Dirac spinor is specific to that of Minkowski spacetime and Lorentz transformations; the general case is quite similar. The remainder of this article is laid out in a pedagogical fashion, using notations and conventions specific to the standard presentation of the Dirac spinor in textbooks on quantum field theory. It focuses primarily on the algebra of the plane-wave solutions. The manner in which the Dirac spinor transforms under the action of the Lorentz group is discussed in the article on bispinors. This article is devoted to the Dirac spinor in the Dirac representation. This corresponds to a specific representation of the gamma matrices, and is best suited for demonstrating the positive and negative energy solutions of the Dirac equation. There are other representations, most notably the chiral representation, which is better suited for demonstrating the chiral symmetry of the solutions to the Dirac equation. The chiral spinors may be written as linear combinations of the Dirac spinors presented below; thus, nothing is lost or gained, other than a change in perspective with regards to the discrete symmetries of the solutions.
  • 自由粒子のディラック方程式の解は、以下の平面波の形式を持つ: ここで、 は4成分スピノル (ディラック・スピノル) であり、 を変数とする関数ではない。 このスピノルは以下のように書き下せる: ここで、 は2成分スピノル はパウリ行列 はそれぞれエネルギー、質量、粒子の四元運動量(four-momentum) を示す。
  • In fisica lo spinore di Dirac è un "vettore" a quattro componenti ma non è un quadrivettore poiché non si trasforma come tale. Esso è soluzione dell'equazione di Dirac le cui componenti sono funzioni d'onda.
  • 量子場論中,狄拉克旋量(英語:Dirac spinor)為一,出現在自由粒子狄拉克方程式的平面波解中: ; 自由粒子的狄拉克方程式為: 其中(採用自然單位制) 為相對論性自旋½場,是狄拉克旋量,與波向量為的平面波有關,,為平面波的四維波向量,而為任意的,為一給定慣性系中的四維空間座標。 正能量解所對應的狄拉克旋量為 其中 為任意的雙旋量,為包立矩陣,為正根號
prov:wasDerivedFrom
page length (characters) of wiki page
is foaf:primaryTopic of
is Link from a Wikipage to another Wikipage of
Faceted Search & Find service v1.17_git81 as of Jul 16 2021


Alternative Linked Data Documents: PivotViewer | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3322 as of Sep 15 2021, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software