About: Density matrix embedding theory     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : dbo:TopicalConcept, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FDensity_matrix_embedding_theory&graph=http%3A%2F%2Fdbpedia.org&graph=http%3A%2F%2Fdbpedia.org

The density matrix embedding theory (DMET) is a numerical technique to solve strongly correlated electronic structure problems. By mapping the system to a fragment plus its entangled quantum bath, the local electron correlation effects on the fragment can be accurately modeled by a post-Hartree–Fock solver. This method has shown high-quality results in 1D- and 2D- Hubbard models,and in chemical model systems incorporating the fully interacting electronic Hamiltonian, including long-range interactions.

AttributesValues
rdf:type
rdfs:label
  • Density matrix embedding theory (en)
rdfs:comment
  • The density matrix embedding theory (DMET) is a numerical technique to solve strongly correlated electronic structure problems. By mapping the system to a fragment plus its entangled quantum bath, the local electron correlation effects on the fragment can be accurately modeled by a post-Hartree–Fock solver. This method has shown high-quality results in 1D- and 2D- Hubbard models,and in chemical model systems incorporating the fully interacting electronic Hamiltonian, including long-range interactions. (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • The density matrix embedding theory (DMET) is a numerical technique to solve strongly correlated electronic structure problems. By mapping the system to a fragment plus its entangled quantum bath, the local electron correlation effects on the fragment can be accurately modeled by a post-Hartree–Fock solver. This method has shown high-quality results in 1D- and 2D- Hubbard models,and in chemical model systems incorporating the fully interacting electronic Hamiltonian, including long-range interactions. The basis of DMET is the Schmidt decomposition for quantum states, which shows that a given quantum many-body state, with macroscopically many degrees of freedom, K, can be represented exactly by an Impurity model consisting of 2N degrees of freedom for N<Density matrix of the impurity model and effective lattice model projected onto the impurity cluster match. When this matching is determined self-consistently, U thus derived in principle exactly models the correlations of the system (since the mapping from the full Hamiltonian to the impurity Hamiltonian is exact). (en)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 56 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software