dbo:abstract
|
- The density matrix embedding theory (DMET) is a numerical technique to solve strongly correlated electronic structure problems. By mapping the system to a fragment plus its entangled quantum bath, the local electron correlation effects on the fragment can be accurately modeled by a post-Hartree–Fock solver. This method has shown high-quality results in 1D- and 2D- Hubbard models,and in chemical model systems incorporating the fully interacting electronic Hamiltonian, including long-range interactions. The basis of DMET is the Schmidt decomposition for quantum states, which shows that a given quantum many-body state, with macroscopically many degrees of freedom, K, can be represented exactly by an Impurity model consisting of 2N degrees of freedom for N<Density matrix of the impurity model and effective lattice model projected onto the impurity cluster match. When this matching is determined self-consistently, U thus derived in principle exactly models the correlations of the system (since the mapping from the full Hamiltonian to the impurity Hamiltonian is exact). (en)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 2330 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
gold:hypernym
| |
rdf:type
| |
rdfs:comment
|
- The density matrix embedding theory (DMET) is a numerical technique to solve strongly correlated electronic structure problems. By mapping the system to a fragment plus its entangled quantum bath, the local electron correlation effects on the fragment can be accurately modeled by a post-Hartree–Fock solver. This method has shown high-quality results in 1D- and 2D- Hubbard models,and in chemical model systems incorporating the fully interacting electronic Hamiltonian, including long-range interactions. (en)
|
rdfs:label
|
- Density matrix embedding theory (en)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |