This HTML5 document contains 49 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
dbpedia-kohttp://ko.dbpedia.org/resource/
n12https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
n9https://archive.org/details/
wikipedia-enhttp://en.wikipedia.org/wiki/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:List_of_mathematical_logic_topics
dbo:wikiPageWikiLink
dbr:Universally_measurable_set
Subject Item
dbr:List_of_properties_of_sets_of_reals
dbo:wikiPageWikiLink
dbr:Universally_measurable_set
Subject Item
dbr:List_of_set_theory_topics
dbo:wikiPageWikiLink
dbr:Universally_measurable_set
Subject Item
dbr:Projection_(measure_theory)
dbo:wikiPageWikiLink
dbr:Universally_measurable_set
Subject Item
dbr:List_of_types_of_sets
dbo:wikiPageWikiLink
dbr:Universally_measurable_set
Subject Item
dbr:Pointclass
dbo:wikiPageWikiLink
dbr:Universally_measurable_set
Subject Item
dbr:Universally_measurable_set
rdfs:label
Universally measurable set 보편 완비 가측 공간
rdfs:comment
측도론에서, 가측 공간 위의 보편 완비 가측 공간(普遍完備可測空間, 영어: universally complete measurable space)은 모든 시그마 유한 완비화에 대하여 가측 집합이 되는 부분 집합들만을 가측 집합으로 삼는 가측 공간이다. In mathematics, a subset of a Polish space is universally measurable if it is measurable with respect to every complete probability measure on that measures all Borel subsets of . In particular, a universally measurable set of reals is necessarily Lebesgue measurable (see below). Every analytic set is universally measurable. It follows from projective determinacy, which in turn follows from sufficient large cardinals, that every projective set is universally measurable.
dcterms:subject
dbc:Measure_theory dbc:Descriptive_set_theory dbc:Determinacy
dbo:wikiPageID
2231292
dbo:wikiPageRevisionID
1034067099
dbo:wikiPageWikiLink
dbr:Lebesgue_measurable dbr:Analytic_set dbr:Subset dbr:Projective_determinacy dbc:Descriptive_set_theory dbr:Mathematics dbr:Axiom_of_choice dbc:Measure_theory dbc:Determinacy dbr:Projective_set dbr:Measurable_set dbr:Borel_set dbr:Probability_measure dbr:Alexander_Kechris dbr:Large_cardinal dbr:Real_number dbr:Complete_measure dbr:Polish_space
dbo:wikiPageExternalLink
n9:classicaldescrip0000kech n9:absolutemeasurab0000nish
owl:sameAs
wikidata:Q7894192 n12:4wURx freebase:m.06xtsz dbpedia-ko:보편_완비_가측_공간
dbp:wikiPageUsesTemplate
dbt:Section_link dbt:Citation
dbo:abstract
측도론에서, 가측 공간 위의 보편 완비 가측 공간(普遍完備可測空間, 영어: universally complete measurable space)은 모든 시그마 유한 완비화에 대하여 가측 집합이 되는 부분 집합들만을 가측 집합으로 삼는 가측 공간이다. In mathematics, a subset of a Polish space is universally measurable if it is measurable with respect to every complete probability measure on that measures all Borel subsets of . In particular, a universally measurable set of reals is necessarily Lebesgue measurable (see below). Every analytic set is universally measurable. It follows from projective determinacy, which in turn follows from sufficient large cardinals, that every projective set is universally measurable.
prov:wasDerivedFrom
wikipedia-en:Universally_measurable_set?oldid=1034067099&ns=0
dbo:wikiPageLength
4949
foaf:isPrimaryTopicOf
wikipedia-en:Universally_measurable_set
Subject Item
dbr:Universally_measurable
dbo:wikiPageWikiLink
dbr:Universally_measurable_set
dbo:wikiPageRedirects
dbr:Universally_measurable_set
Subject Item
wikipedia-en:Universally_measurable_set
foaf:primaryTopic
dbr:Universally_measurable_set