This HTML5 document contains 77 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
n15http://www.math.umass.edu/~hacking/agnes/
foafhttp://xmlns.com/foaf/0.1/
n16https://global.dbpedia.org/id/
n18http://www.cms.zju.edu.cn/UploadFiles/AttachFiles/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
goldhttp://purl.org/linguistics/gold/
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Motive_(algebraic_geometry)
dbo:wikiPageWikiLink
dbr:Mumford–Tate_group
Subject Item
dbr:Hodge_group
dbo:wikiPageWikiLink
dbr:Mumford–Tate_group
dbo:wikiPageRedirects
dbr:Mumford–Tate_group
Subject Item
dbr:John_Tate_(mathematician)
dbo:wikiPageWikiLink
dbr:Mumford–Tate_group
Subject Item
dbr:Schanuel's_conjecture
dbo:wikiPageWikiLink
dbr:Mumford–Tate_group
Subject Item
dbr:Mumford-Tate_group
dbo:wikiPageWikiLink
dbr:Mumford–Tate_group
dbo:wikiPageRedirects
dbr:Mumford–Tate_group
Subject Item
dbr:1966_in_science
dbo:wikiPageWikiLink
dbr:Mumford–Tate_group
Subject Item
dbr:Linear_algebraic_group
dbo:wikiPageWikiLink
dbr:Mumford–Tate_group
Subject Item
dbr:Weil_restriction
dbo:wikiPageWikiLink
dbr:Mumford–Tate_group
Subject Item
dbr:Hodge–Tate_module
dbo:wikiPageWikiLink
dbr:Mumford–Tate_group
Subject Item
dbr:List_of_things_named_after_Alexander_Grothendieck
dbo:wikiPageWikiLink
dbr:Mumford–Tate_group
Subject Item
dbr:List_of_things_named_after_W._V._D._Hodge
dbo:wikiPageWikiLink
dbr:Mumford–Tate_group
Subject Item
dbr:Tate_group
dbo:wikiPageWikiLink
dbr:Mumford–Tate_group
Subject Item
dbr:Mumford–Tate_group
rdf:type
yago:Group100031264 yago:Abstraction100002137 yago:WikicatAlgebraicGroups dbo:Device
rdfs:label
Mumford–Tate group
rdfs:comment
In algebraic geometry, the Mumford–Tate group (or Hodge group) MT(F) constructed from a Hodge structure F is a certain algebraic group G. When F is given by a rational representation of an algebraic torus, the definition of G is as the Zariski closure of the image in the representation of the circle group, over the rational numbers. Mumford introduced Mumford–Tate groups over the complex numbers under the name of Hodge groups. introduced the p-adic analogue of Mumford's construction for Hodge–Tate modules, using the work of Tate on p-divisible groups, and named them Mumford–Tate groups.
dcterms:subject
dbc:Algebraic_groups dbc:Hodge_theory
dbo:wikiPageID
27137708
dbo:wikiPageRevisionID
1076649568
dbo:wikiPageWikiLink
dbr:Lattice_(group_theory) dbr:Rational_representation dbr:Algebraic_torus dbr:Springer-Verlag dbr:Unitary_group dbr:P-divisible_group dbr:Rational_numbers dbc:Hodge_theory dbr:American_Mathematical_Society dbr:Hodge–Tate_module dbr:Circle_group dbr:Multiplicative_group dbc:Algebraic_groups dbr:Period_matrix dbr:Algebraic_geometry dbr:Pierre_Deligne dbr:Phillip_Griffiths dbr:Motivic_Galois_group dbr:L-adic dbr:Abelian_variety dbr:Hodge_structure dbr:Algebraic_group dbr:Weil_restriction dbr:Tate_module dbr:Lie_algebra dbr:Galois_representation dbr:Kähler_manifold dbr:Sato–Tate_conjecture dbr:Zariski_closure dbr:Cohomology_group dbr:Transcendence_degree
dbo:wikiPageExternalLink
n15:griffiths.pdf n18:2005730145725232.pdf
owl:sameAs
wikidata:Q6935407 n16:4sDGD freebase:m.0bwm6mk
dbp:wikiPageUsesTemplate
dbt:Short_description dbt:Harvs dbt:Citation dbt:Harvtxt dbt:Reflist
dbo:abstract
In algebraic geometry, the Mumford–Tate group (or Hodge group) MT(F) constructed from a Hodge structure F is a certain algebraic group G. When F is given by a rational representation of an algebraic torus, the definition of G is as the Zariski closure of the image in the representation of the circle group, over the rational numbers. Mumford introduced Mumford–Tate groups over the complex numbers under the name of Hodge groups. introduced the p-adic analogue of Mumford's construction for Hodge–Tate modules, using the work of Tate on p-divisible groups, and named them Mumford–Tate groups.
gold:hypernym
dbr:G
prov:wasDerivedFrom
wikipedia-en:Mumford–Tate_group?oldid=1076649568&ns=0
dbo:wikiPageLength
6181
foaf:isPrimaryTopicOf
wikipedia-en:Mumford–Tate_group
Subject Item
dbr:Serre_group
dbo:wikiPageWikiLink
dbr:Mumford–Tate_group
Subject Item
dbr:Tannakian_formalism
dbo:wikiPageWikiLink
dbr:Mumford–Tate_group
Subject Item
dbr:Mumford-Tate_conjecture
dbo:wikiPageWikiLink
dbr:Mumford–Tate_group
dbo:wikiPageRedirects
dbr:Mumford–Tate_group
Subject Item
dbr:Mumford–Tate_conjecture
dbo:wikiPageWikiLink
dbr:Mumford–Tate_group
dbo:wikiPageRedirects
dbr:Mumford–Tate_group
Subject Item
wikipedia-en:Mumford–Tate_group
foaf:primaryTopic
dbr:Mumford–Tate_group