This HTML5 document contains 132 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n23http://ta.dbpedia.org/resource/
n14http://dbpedia.org/resource/File:
dbpedia-eshttp://es.dbpedia.org/resource/
n18https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
dbpedia-pthttp://pt.dbpedia.org/resource/
n24https://www.ams.org/journals/bull/1895-01-06/S0002-9904-1895-00266-9/
dbpedia-fihttp://fi.dbpedia.org/resource/
n20http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
dbpedia-arhttp://ar.dbpedia.org/resource/
owlhttp://www.w3.org/2002/07/owl#
n29http://bs.dbpedia.org/resource/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbpedia-zhhttp://zh.dbpedia.org/resource/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
n10http://dbpedia.org/resource/Command_&_Conquer:
wikidatahttp://www.wikidata.org/entity/
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/
dbpedia-rohttp://ro.dbpedia.org/resource/

Statements

Subject Item
dbr:Hyperbolic_angle
dbo:wikiPageWikiLink
dbr:Hyperbolic_sector
Subject Item
dbr:Hyperbolic_functions
dbo:wikiPageWikiLink
dbr:Hyperbolic_sector
Subject Item
dbr:Index_of_logarithm_articles
dbo:wikiPageWikiLink
dbr:Hyperbolic_sector
Subject Item
dbr:Inverse_hyperbolic_functions
dbo:wikiPageWikiLink
dbr:Hyperbolic_sector
Subject Item
dbr:List_of_mathematical_proofs
dbo:wikiPageWikiLink
dbr:Hyperbolic_sector
Subject Item
n10:_Tiberium_Alliances
dbo:wikiPageWikiLink
dbr:Hyperbolic_sector
Subject Item
dbr:Signed_measure
dbo:wikiPageWikiLink
dbr:Hyperbolic_sector
Subject Item
dbr:Angle
dbo:wikiPageWikiLink
dbr:Hyperbolic_sector
Subject Item
dbr:Haar_measure
dbo:wikiPageWikiLink
dbr:Hyperbolic_sector
Subject Item
dbr:Normalizing_constant
dbo:wikiPageWikiLink
dbr:Hyperbolic_sector
Subject Item
dbr:Isaak_Yaglom
dbo:wikiPageWikiLink
dbr:Hyperbolic_sector
Subject Item
dbr:Hyperbola
dbo:wikiPageWikiLink
dbr:Hyperbolic_sector
Subject Item
dbr:Hyperbolic_coordinates
dbo:wikiPageWikiLink
dbr:Hyperbolic_sector
Subject Item
dbr:Hyperbolic_logarithm
dbo:wikiPageWikiLink
dbr:Hyperbolic_sector
dbo:wikiPageRedirects
dbr:Hyperbolic_sector
Subject Item
dbr:Hyperbolic_sector
rdf:type
yago:Notation106808493 yago:Curve113867641 yago:Abstraction100002137 yago:MathematicalNotation106808720 dbo:Settlement yago:Line113863771 yago:WikicatLogarithms yago:Logarithm106812631 yago:Communication100033020 yago:Exponent106812417 yago:WrittenCommunication106349220 yago:Shape100027807 yago:Attribute100024264 yago:Writing106359877 yago:WikicatCurves
rdfs:label
Sector hiperbólico Setor hiperbólico 雙曲線扇形 Hyperbolic sector قطاع قطع زائد
rdfs:comment
A hyperbolic sector is a region of the Cartesian plane bounded by a hyperbola and two rays from the origin to it. For example, the two points (a, 1/a) and (b, 1/b) on the rectangular hyperbola xy = 1, or the corresponding region when this hyperbola is re-scaled and its orientation is altered by a rotation leaving the center at the origin, as with the unit hyperbola. A hyperbolic sector in standard position has a = 1 and b > 1. Hyperbolic sectors are the basis for the hyperbolic functions. في الهندسة الرياضية، يعرف قطاع القطع الزائد (بالإنجليزية: hyperbolic sector)‏ على أنه المنطقة من المستوي الديكارتي {(x,y)} محاط بشعاعين من مبدأ الإحداثيات إلى نقطتين (a, 1/a) و(b, 1/b) وبالقطع الزائد ذو المعادلة xy = 1. تعطى مساحة قطاع القطع الزائد في وضعه العام بالعلاقة ln b Um setor hiperbólico é uma região do plano cartesiano {(x,y)} delimitada pelos raios desde a origem a dois pontos (a, 1/a) e (b, 1/b) e a hipérbole xy = 1. Em um setor hiperbólico em posição padrão a = 1 e b > 1. A área de um setor hiperbólico em posição padrão é o loge b. (Demonstração: Integrar sob a curva 1/x entre 1 e b, e somar-lhe a área do triângulo {(0, 0), (1, 0), (1, 1)}, e debitar-lhe a área do triângulo {(0, 0), (b, 0), (b, 1/b)}) Quando um setor hiperbólico se encontra em posição padrão o mesmo se relaciona com um ângulo hiperbólico positivo. Un sector hiperbólico es una región del plano cartesiano {(x,y)} delimitada por los rayos desde el origen a dos puntos (a, 1/a) y (b, 1/b) y la hipérbola xy = 1.​ En un sector hiperbólico en posición estándar a = 1 y b > 1 . El área de un sector hiperbólico en posición estándar es el loge b . (Demostración: Integrar bajo la curva 1/x entre 1 y b, y sumarle el área del triángulo {(0, 0), (1, 0), (1, 1)}, y restarle el área del triángulo {(0, 0), (b, 0), (b, 1/b)} ) Cuando un sector hiperbólico se encuentra en posición estándar el mismo se corresponde con un ángulo hiperbólico positivo. 雙曲線扇形是指在一個笛卡儿坐标平面 之上,雙曲線與從原點出發的兩條射線相交處的兩點和之間的面積。 一個標準位置的雙曲線扇形有及。 處於標準位置的雙曲線扇形的面積是 。 證明: 黃色部分的面積相等於三角形的面積加上雙曲線底下從 到 的面積,再減去白色三角形的面積。所以,黃色部分的面積為: 處於標準位置的雙曲線扇形與正值的雙曲角相對應。
foaf:depiction
n20:Hyperbolic_sector.svg n20:Hyperbolic_sector_squeeze_mapping.svg n20:Hyperbola_E.svg n20:Cartesian_hyperbolic_triangle.svg
dcterms:subject
dbc:Logarithms dbc:Area dbc:Elementary_geometry dbc:Integral_calculus
dbo:wikiPageID
1139926
dbo:wikiPageRevisionID
1116931735
dbo:wikiPageWikiLink
dbr:Mellen_W._Haskell dbc:Logarithms dbr:Ray_(geometry) dbr:Transcendental_function dbr:Rotation_(geometry) dbr:Inverse_function dbr:Right_triangle dbr:Natural_logarithm dbr:Vertex_(geometry) dbr:The_Quadrature_of_the_Parabola dbc:Area dbr:Felix_Klein dbr:Archimedes n14:Hyperbolic_sector.svg dbr:Non-Euclidean_geometry n14:Hyperbolic_sector_squeeze_mapping.svg dbr:William_Burnside dbr:Augustus_De_Morgan dbr:E_(mathematical_constant) dbr:Cartesian_plane dbr:Area n14:Cartesian_hyperbolic_triangle.svg dbr:Squeeze_mapping dbc:Elementary_geometry dbr:Introduction_to_the_Analysis_of_the_Infinite n14:Hyperbola_E.svg dbr:Bulletin_of_the_American_Mathematical_Society dbr:Orientation_(geometry) dbc:Integral_calculus dbr:Altitude_(triangle) dbr:Hyperbolic_function dbr:Leonhard_Euler dbr:Quadrature_(mathematics) dbr:Hyperbolic_angle dbr:Region_(mathematics) dbr:Projective_geometry dbr:Antiderivative dbr:Unit_hyperbola dbr:Hyperbola dbr:Gregoire_de_Saint-Vincent dbr:Cavalieri's_quadrature_formula
dbo:wikiPageExternalLink
n24:S0002-9904-1895-00266-9.pdf
owl:sameAs
dbpedia-ro:Sector_hiperbolic dbpedia-zh:雙曲線扇形 dbpedia-ar:قطاع_قطع_زائد n18:2zTbZ dbpedia-fi:Hyperbolinen_sektori yago-res:Hyperbolic_sector dbpedia-pt:Setor_hiperbólico n23:அதிபரவளையத்_துண்டு dbpedia-es:Sector_hiperbólico wikidata:Q3235577 freebase:m.049rq2 n29:Hiperbolički_sektor
dbp:wikiPageUsesTemplate
dbt:Short_description dbt:Reflist dbt:Math dbt:Radic dbt:Main_article
dbo:thumbnail
n20:Hyperbolic_sector.svg?width=300
dbo:abstract
A hyperbolic sector is a region of the Cartesian plane bounded by a hyperbola and two rays from the origin to it. For example, the two points (a, 1/a) and (b, 1/b) on the rectangular hyperbola xy = 1, or the corresponding region when this hyperbola is re-scaled and its orientation is altered by a rotation leaving the center at the origin, as with the unit hyperbola. A hyperbolic sector in standard position has a = 1 and b > 1. Hyperbolic sectors are the basis for the hyperbolic functions. في الهندسة الرياضية، يعرف قطاع القطع الزائد (بالإنجليزية: hyperbolic sector)‏ على أنه المنطقة من المستوي الديكارتي {(x,y)} محاط بشعاعين من مبدأ الإحداثيات إلى نقطتين (a, 1/a) و(b, 1/b) وبالقطع الزائد ذو المعادلة xy = 1. تعطى مساحة قطاع القطع الزائد في وضعه العام بالعلاقة ln b Um setor hiperbólico é uma região do plano cartesiano {(x,y)} delimitada pelos raios desde a origem a dois pontos (a, 1/a) e (b, 1/b) e a hipérbole xy = 1. Em um setor hiperbólico em posição padrão a = 1 e b > 1. A área de um setor hiperbólico em posição padrão é o loge b. (Demonstração: Integrar sob a curva 1/x entre 1 e b, e somar-lhe a área do triângulo {(0, 0), (1, 0), (1, 1)}, e debitar-lhe a área do triângulo {(0, 0), (b, 0), (b, 1/b)}) Quando um setor hiperbólico se encontra em posição padrão o mesmo se relaciona com um ângulo hiperbólico positivo. Un sector hiperbólico es una región del plano cartesiano {(x,y)} delimitada por los rayos desde el origen a dos puntos (a, 1/a) y (b, 1/b) y la hipérbola xy = 1.​ En un sector hiperbólico en posición estándar a = 1 y b > 1 . El área de un sector hiperbólico en posición estándar es el loge b . (Demostración: Integrar bajo la curva 1/x entre 1 y b, y sumarle el área del triángulo {(0, 0), (1, 0), (1, 1)}, y restarle el área del triángulo {(0, 0), (b, 0), (b, 1/b)} ) Cuando un sector hiperbólico se encuentra en posición estándar el mismo se corresponde con un ángulo hiperbólico positivo. 雙曲線扇形是指在一個笛卡儿坐标平面 之上,雙曲線與從原點出發的兩條射線相交處的兩點和之間的面積。 一個標準位置的雙曲線扇形有及。 處於標準位置的雙曲線扇形的面積是 。 證明: 黃色部分的面積相等於三角形的面積加上雙曲線底下從 到 的面積,再減去白色三角形的面積。所以,黃色部分的面積為: 處於標準位置的雙曲線扇形與正值的雙曲角相對應。
gold:hypernym
dbr:Region
prov:wasDerivedFrom
wikipedia-en:Hyperbolic_sector?oldid=1116931735&ns=0
dbo:wikiPageLength
6118
foaf:isPrimaryTopicOf
wikipedia-en:Hyperbolic_sector
Subject Item
dbr:Split-complex_number
dbo:wikiPageWikiLink
dbr:Hyperbolic_sector
Subject Item
dbr:Squeeze_mapping
dbo:wikiPageWikiLink
dbr:Hyperbolic_sector
Subject Item
dbr:Grégoire_de_Saint-Vincent
dbo:wikiPageWikiLink
dbr:Hyperbolic_sector
Subject Item
dbr:Natural_logarithm
dbo:wikiPageWikiLink
dbr:Hyperbolic_sector
Subject Item
dbr:Rapidity
dbo:wikiPageWikiLink
dbr:Hyperbolic_sector
Subject Item
dbr:Hyperbolic
dbo:wikiPageWikiLink
dbr:Hyperbolic_sector
dbo:wikiPageDisambiguates
dbr:Hyperbolic_sector
Subject Item
dbr:Sector
dbo:wikiPageWikiLink
dbr:Hyperbolic_sector
dbo:wikiPageDisambiguates
dbr:Hyperbolic_sector
Subject Item
dbr:Unit_hyperbola
dbo:wikiPageWikiLink
dbr:Hyperbolic_sector
Subject Item
dbr:Right_triangle
dbo:wikiPageWikiLink
dbr:Hyperbolic_sector
Subject Item
dbr:Transcendental_function
dbo:wikiPageWikiLink
dbr:Hyperbolic_sector
Subject Item
wikipedia-en:Hyperbolic_sector
foaf:primaryTopic
dbr:Hyperbolic_sector