This HTML5 document contains 58 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
n16http://dbpedia.org/resource/File:
foafhttp://xmlns.com/foaf/0.1/
n13https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
n18http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Heterogeneous_random_walk_in_one_dimension
rdf:type
yago:Model105890249 yago:Idea105833840 yago:Hypothesis105888929 yago:WikicatStochasticProcesses yago:Cognition100023271 yago:Content105809192 yago:Concept105835747 yago:PsychologicalFeature100023100 yago:Abstraction100002137 yago:StochasticProcess113561896
rdfs:label
Heterogeneous random walk in one dimension
rdfs:comment
In dynamics, probability, physics, chemistry and related fields, a heterogeneous random walk in one dimension is a random walk in a one dimensional interval with jumping rules that depend on the location of the random walker in the interval.
foaf:depiction
n18:Random_walk_in1d.jpg
dcterms:subject
dbc:Variants_of_random_walks dbc:Statistical_mechanics
dbo:wikiPageID
31907287
dbo:wikiPageRevisionID
1100285570
dbo:wikiPageWikiLink
dbr:Physics dbr:Renewal_theory dbr:Uniform_distribution_(continuous) dbr:Fokker–Planck_equation dbc:Variants_of_random_walks dbr:Stochastic_differential_equation dbr:Semi-Markov_process dbr:Probability dbr:Dynamics_(mechanics) dbr:Chemistry dbr:Random_walk n16:Random_walk_in1d.jpg dbr:Quantum_dots dbr:Green's_function dbr:Master_equation dbc:Statistical_mechanics dbr:Chemical_kinetics dbr:Probability_density_function dbr:Markov_process
owl:sameAs
n13:4mNnf freebase:m.0gvtx8b wikidata:Q5747218
dbp:wikiPageUsesTemplate
dbt:Context dbt:Cite_book dbt:NumBlk dbt:Which dbt:Failed_verification dbt:Clarify dbt:EquationRef dbt:EquationNote dbt:Weasel_inline dbt:Citation_needed dbt:Reflist
dbo:thumbnail
n18:Random_walk_in1d.jpg?width=300
dbo:abstract
In dynamics, probability, physics, chemistry and related fields, a heterogeneous random walk in one dimension is a random walk in a one dimensional interval with jumping rules that depend on the location of the random walker in the interval. For example: say that the time is discrete and also the interval. Namely, the random walker jumps every time step either left or right. A possible heterogeneous random walk draws in each time step a random number that determines the local jumping probabilities and then a random number that determines the actual jump direction. Specifically, say that the interval has 9 sites (labeled 1 through 9), and the sites (also termed states) are connected with each other linearly (where the edges sites are connected their adjacent sites and together). In each time step, the jump probabilities (from the actual site) are determined when flipping a coin; for head we set: probability jumping left =1/3, where for tail we set: probability jumping left = 0.55. Then, a random number is drawn from a uniform distribution: when the random number is smaller than probability jumping left, the jump is for the left, otherwise, the jump is for the right. Usually, in such a system, we are interested in the probability of staying in each of the various sites after t jumps, and in the limit of this probability when t is very large, . Generally, the time in such processes can also vary in a continuous way, and the interval is also either discrete or continuous. Moreover, the interval is either finite or without bounds. In a discrete system, the connections are among adjacent states. The basic dynamics are either Markovian, semi-Markovian, or even not Markovian depending on the model. In discrete systems, heterogeneous random walks in 1d have jump probabilities that depend on the location in the system, and/or different jumping time (JT) probability density functions (PDFs) that depend on the location in the system.,,,,,,,,,,,,,,,,,General solutions for heterogeneous random walks in 1d obey equations-, presented in what follows.
prov:wasDerivedFrom
wikipedia-en:Heterogeneous_random_walk_in_one_dimension?oldid=1100285570&ns=0
dbo:wikiPageLength
30281
foaf:isPrimaryTopicOf
wikipedia-en:Heterogeneous_random_walk_in_one_dimension
Subject Item
dbr:Heterogeneous_random_walks_in_one_dimension
dbo:wikiPageWikiLink
dbr:Heterogeneous_random_walk_in_one_dimension
dbo:wikiPageRedirects
dbr:Heterogeneous_random_walk_in_one_dimension
Subject Item
wikipedia-en:Heterogeneous_random_walk_in_one_dimension
foaf:primaryTopic
dbr:Heterogeneous_random_walk_in_one_dimension