About: Weil group

An Entity of Type: video game, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org:8891

In mathematics, a Weil group, introduced by Weil, is a modification of the absolute Galois group of a local or global field, used in class field theory. For such a field F, its Weil group is generally denoted WF. There also exists "finite level" modifications of the Galois groups: if E/F is a finite extension, then the relative Weil group of E/F is WE/F = WF/W cE (where the superscript c denotes the commutator subgroup). For more details about Weil groups see or or.

Property Value
dbo:abstract
  • In mathematics, a Weil group, introduced by Weil, is a modification of the absolute Galois group of a local or global field, used in class field theory. For such a field F, its Weil group is generally denoted WF. There also exists "finite level" modifications of the Galois groups: if E/F is a finite extension, then the relative Weil group of E/F is WE/F = WF/W cE (where the superscript c denotes the commutator subgroup). For more details about Weil groups see or or. (en)
  • 数学において、ヴェイユ群(Weil group)は、 Weilで導入され、類体論で使われる絶対ガロア群の局所体や大域体での変形である。そのような体 F に対して、ヴェイユ群は一般に WF と記される。ガロア群の「有限なレベル」の変形も存在し、E/F を有限拡大としたときの E/F の相対ヴェイユ群(relative Weil group)が WE/F = WF/W cE である(この記号 c は交換子部分群による完備化を意味している。)。 ヴェイユ群について、詳しくは、 や や を参照。 (ja)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 6375618 (xsd:integer)
dbo:wikiPageLength
  • 7731 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1045234099 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • In mathematics, a Weil group, introduced by Weil, is a modification of the absolute Galois group of a local or global field, used in class field theory. For such a field F, its Weil group is generally denoted WF. There also exists "finite level" modifications of the Galois groups: if E/F is a finite extension, then the relative Weil group of E/F is WE/F = WF/W cE (where the superscript c denotes the commutator subgroup). For more details about Weil groups see or or. (en)
  • 数学において、ヴェイユ群(Weil group)は、 Weilで導入され、類体論で使われる絶対ガロア群の局所体や大域体での変形である。そのような体 F に対して、ヴェイユ群は一般に WF と記される。ガロア群の「有限なレベル」の変形も存在し、E/F を有限拡大としたときの E/F の相対ヴェイユ群(relative Weil group)が WE/F = WF/W cE である(この記号 c は交換子部分群による完備化を意味している。)。 ヴェイユ群について、詳しくは、 や や を参照。 (ja)
rdfs:label
  • Weil group (en)
  • ヴェイユ群 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:differentFrom of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License