dbo:abstract
|
- In graph theory, a weak coloring is a special case of a graph labeling. A weak k-coloring of a graph G = (V, E) assigns a color c(v) ∈ {1, 2, ..., k} to each vertex v ∈ V, such that each non-isolated vertex is adjacent to at least one vertex with different color. In notation, for each non-isolated v ∈ V, there is a vertex u ∈ V with {u, v} ∈ E and c(u) ≠ c(v). The figure on the right shows a weak 2-coloring of a graph. Each dark vertex (color 1) is adjacent to at least one light vertex (color 2) and vice versa. (en)
- Слабая раскраска — это специальный вид разметки графа. Слабая k-раскраска графа G = (V, E) назначает цвета c(v) ∈ {1, 2, ..., k} всем вершинам v ∈ V, так что каждая неизолированная вершина смежна по меньшей мере одной вершине другого цвета. В формальных обозначениях, для любой неизолированной вершины v ∈ V существует вершина u ∈ U с {u, v} ∈ E и c(u) ≠ c(v). Рисунок справа показывает слабую 2-цветную раскраску графа. Каждая тёмная вершина (цвет 1) смежна по меньшей мере с одной светлой вершиной (цвет 2) и наоборот. (ru)
|
dbo:thumbnail
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 3739 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
gold:hypernym
| |
rdf:type
| |
rdfs:comment
|
- In graph theory, a weak coloring is a special case of a graph labeling. A weak k-coloring of a graph G = (V, E) assigns a color c(v) ∈ {1, 2, ..., k} to each vertex v ∈ V, such that each non-isolated vertex is adjacent to at least one vertex with different color. In notation, for each non-isolated v ∈ V, there is a vertex u ∈ V with {u, v} ∈ E and c(u) ≠ c(v). The figure on the right shows a weak 2-coloring of a graph. Each dark vertex (color 1) is adjacent to at least one light vertex (color 2) and vice versa. (en)
- Слабая раскраска — это специальный вид разметки графа. Слабая k-раскраска графа G = (V, E) назначает цвета c(v) ∈ {1, 2, ..., k} всем вершинам v ∈ V, так что каждая неизолированная вершина смежна по меньшей мере одной вершине другого цвета. В формальных обозначениях, для любой неизолированной вершины v ∈ V существует вершина u ∈ U с {u, v} ∈ E и c(u) ≠ c(v). Рисунок справа показывает слабую 2-цветную раскраску графа. Каждая тёмная вершина (цвет 1) смежна по меньшей мере с одной светлой вершиной (цвет 2) и наоборот. (ru)
|
rdfs:label
|
- Weak coloring (en)
- Слабая раскраска (ru)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:depiction
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |