An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org:8891

In mathematics, a subset of a Polish space is universally measurable if it is measurable with respect to every complete probability measure on that measures all Borel subsets of . In particular, a universally measurable set of reals is necessarily Lebesgue measurable (see below). Every analytic set is universally measurable. It follows from projective determinacy, which in turn follows from sufficient large cardinals, that every projective set is universally measurable.

Property Value
dbo:abstract
  • In mathematics, a subset of a Polish space is universally measurable if it is measurable with respect to every complete probability measure on that measures all Borel subsets of . In particular, a universally measurable set of reals is necessarily Lebesgue measurable (see below). Every analytic set is universally measurable. It follows from projective determinacy, which in turn follows from sufficient large cardinals, that every projective set is universally measurable. (en)
  • 측도론에서, 가측 공간 위의 보편 완비 가측 공간(普遍完備可測空間, 영어: universally complete measurable space)은 모든 시그마 유한 완비화에 대하여 가측 집합이 되는 부분 집합들만을 가측 집합으로 삼는 가측 공간이다. (ko)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 2231292 (xsd:integer)
dbo:wikiPageLength
  • 4949 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1034067099 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • In mathematics, a subset of a Polish space is universally measurable if it is measurable with respect to every complete probability measure on that measures all Borel subsets of . In particular, a universally measurable set of reals is necessarily Lebesgue measurable (see below). Every analytic set is universally measurable. It follows from projective determinacy, which in turn follows from sufficient large cardinals, that every projective set is universally measurable. (en)
  • 측도론에서, 가측 공간 위의 보편 완비 가측 공간(普遍完備可測空間, 영어: universally complete measurable space)은 모든 시그마 유한 완비화에 대하여 가측 집합이 되는 부분 집합들만을 가측 집합으로 삼는 가측 공간이다. (ko)
rdfs:label
  • 보편 완비 가측 공간 (ko)
  • Universally measurable set (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License