In quantum mechanics, universality is the observation that there are properties for a large class of systems that are independent of the exact structural details of the system. The notion of universality is familiar in the study and application of statistical mechanics to various physical systems since its introduction in a very precise fashion by Leo Kadanoff. Although not quite the same, it is closely related to universality as applied to quantum systems. This concept links to the essence of renormalization and scaling in many problems. Renormalization is based on the notion that a measurement device of wavelength is insensitive to details of structure at distances much smaller than . An important consequence of universality is that one can mimic the real short-structure distance of the
Property | Value |
---|---|
dbo:abstract |
|
dbo:wikiPageID |
|
dbo:wikiPageLength |
|
dbo:wikiPageRevisionID |
|
dbo:wikiPageWikiLink |
|
dbp:wikiPageUsesTemplate | |
dcterms:subject | |
rdfs:comment |
|
rdfs:label |
|
owl:sameAs | |
prov:wasDerivedFrom | |
foaf:isPrimaryTopicOf | |
is dbo:wikiPageRedirects of | |
is dbo:wikiPageWikiLink of | |
is foaf:primaryTopic of |