About: Unit root

An Entity of Type: work, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org:8891

In probability theory and statistics, a unit root is a feature of some stochastic processes (such as random walks) that can cause problems in statistical inference involving time series models. A linear stochastic process has a unit root if 1 is a root of the process's characteristic equation. Such a process is non-stationary but does not always have a trend. If a root of the process's characteristic equation is larger than 1, then it is called an explosive process, even though such processes are sometimes inaccurately called unit roots processes.

Property Value
dbo:abstract
  • Una raíz unitaria es una característica de los procesos que evolucionan a través del tiempo y que puede causar problemas en inferencia estadística en modelos de series de tiempo. Un proceso estocástico lineal tiene una raíz unitaria si el valor de la raíz de la ecuación característica del proceso es igual a 1, por lo tanto tal proceso es no estacionario. Si las demás raíces de la ecuación característica se encuentran dentro del círculo unitario - es decir, tienen un valor absoluto menor a uno - entonces la primera diferencia del proceso es estacionaria.​​ (es)
  • Von einer Einheitswurzel spricht man in der Ökonometrie, speziell in der Zeitreihenanalyse, wenn 1 eine Nullstelle des charakteristischen Polynoms ist. Ein stochastischer Prozess, der eine solche Einheitswurzel besitzt, ist nichtstationär, man spricht auch von einem stochastischen Trend. Das ist insbesondere deswegen wichtig, weil viele statistische Schätzverfahren, wie beispielsweise die Methode der kleinsten Quadrate, stationäre Daten voraussetzen und falsche Ergebnisse liefern, wenn die zugrunde liegenden Reihen nicht stationär sind, wie zum Beispiel im Fall der spurious regression. (de)
  • 単位根(たんいこん、英: unit root)とは、時間を通じて変化する確率過程が持つ、統計的推論に問題をもたらし得る側面の一つである。 もし線形な確率過程の特性方程式の根の一つが1であるならば、その確率過程は単位根を持つ。このような確率過程は非定常である。もしこの確率過程の特性方程式の他の根がすべて単位円の内側にあるならば、つまり絶対値が1以下ならば、この確率過程の1階差分は定常である。 (ja)
  • In probability theory and statistics, a unit root is a feature of some stochastic processes (such as random walks) that can cause problems in statistical inference involving time series models. A linear stochastic process has a unit root if 1 is a root of the process's characteristic equation. Such a process is non-stationary but does not always have a trend. If the other roots of the characteristic equation lie inside the unit circle—that is, have a modulus (absolute value) less than one—then the first difference of the process will be stationary; otherwise, the process will need to be differenced multiple times to become stationary. If there are d unit roots, the process will have to be differenced d times in order to make it stationary. Due to this characteristic, unit root processes are also called difference stationary. Unit root processes may sometimes be confused with trend-stationary processes; while they share many properties, they are different in many aspects. It is possible for a time series to be non-stationary, yet have no unit root and be trend-stationary. In both unit root and trend-stationary processes, the mean can be growing or decreasing over time; however, in the presence of a shock, trend-stationary processes are mean-reverting (i.e. transitory, the time series will converge again towards the growing mean, which was not affected by the shock) while unit-root processes have a permanent impact on the mean (i.e. no convergence over time). If a root of the process's characteristic equation is larger than 1, then it is called an explosive process, even though such processes are sometimes inaccurately called unit roots processes. The presence of a unit root can be tested using a unit root test. (en)
  • Едини́чный ко́рень (англ. unit root) — понятие, используемое в анализе временных рядов (эконометрика), характеризующее свойство некоторых нестационарных временных рядов. Название связано с тем, что так называемое характеристическое уравнение (или характеристический полином) авторегрессионной модели временного ряда имеет корни, равные по модулю единице. Наличие единичных корней в авторегрегрессионной модели временного ряда эквивалентно понятию интегрированности временного ряда. (ru)
  • Em modelos de séries temporais em econometria (aplicação de métodos estatísticos à economia), a unidade de raiz é uma característica dos processos que evoluem ao longo do tempo e que podem causar problemas na inferência estatística, se não for tratada adequadamente. Um processo estocástico linear tem uma raiz unitária se 1 é raiz da equação característica do processo. Tal processo é não-estacionário. Se as outras raízes da equação característica ocorrem dentro do círculo unitário – ou seja, têm um módulo (valor absoluto) menor que um –, então a primeira diferença do processo é estacionária. (pt)
  • 在计量经济学的自回归模型裡,如果在裡,系数,那么一个单位根是存在的。其中: 是在t 时刻的变量,b 是斜率系数, 是误差项。 如果单位根存在,时间序列可以说是有一个随机趋向。 (zh)
dbo:thumbnail
dbo:wikiPageID
  • 2398969 (xsd:integer)
dbo:wikiPageLength
  • 15916 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1093120611 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • Una raíz unitaria es una característica de los procesos que evolucionan a través del tiempo y que puede causar problemas en inferencia estadística en modelos de series de tiempo. Un proceso estocástico lineal tiene una raíz unitaria si el valor de la raíz de la ecuación característica del proceso es igual a 1, por lo tanto tal proceso es no estacionario. Si las demás raíces de la ecuación característica se encuentran dentro del círculo unitario - es decir, tienen un valor absoluto menor a uno - entonces la primera diferencia del proceso es estacionaria.​​ (es)
  • Von einer Einheitswurzel spricht man in der Ökonometrie, speziell in der Zeitreihenanalyse, wenn 1 eine Nullstelle des charakteristischen Polynoms ist. Ein stochastischer Prozess, der eine solche Einheitswurzel besitzt, ist nichtstationär, man spricht auch von einem stochastischen Trend. Das ist insbesondere deswegen wichtig, weil viele statistische Schätzverfahren, wie beispielsweise die Methode der kleinsten Quadrate, stationäre Daten voraussetzen und falsche Ergebnisse liefern, wenn die zugrunde liegenden Reihen nicht stationär sind, wie zum Beispiel im Fall der spurious regression. (de)
  • 単位根(たんいこん、英: unit root)とは、時間を通じて変化する確率過程が持つ、統計的推論に問題をもたらし得る側面の一つである。 もし線形な確率過程の特性方程式の根の一つが1であるならば、その確率過程は単位根を持つ。このような確率過程は非定常である。もしこの確率過程の特性方程式の他の根がすべて単位円の内側にあるならば、つまり絶対値が1以下ならば、この確率過程の1階差分は定常である。 (ja)
  • Едини́чный ко́рень (англ. unit root) — понятие, используемое в анализе временных рядов (эконометрика), характеризующее свойство некоторых нестационарных временных рядов. Название связано с тем, что так называемое характеристическое уравнение (или характеристический полином) авторегрессионной модели временного ряда имеет корни, равные по модулю единице. Наличие единичных корней в авторегрегрессионной модели временного ряда эквивалентно понятию интегрированности временного ряда. (ru)
  • Em modelos de séries temporais em econometria (aplicação de métodos estatísticos à economia), a unidade de raiz é uma característica dos processos que evoluem ao longo do tempo e que podem causar problemas na inferência estatística, se não for tratada adequadamente. Um processo estocástico linear tem uma raiz unitária se 1 é raiz da equação característica do processo. Tal processo é não-estacionário. Se as outras raízes da equação característica ocorrem dentro do círculo unitário – ou seja, têm um módulo (valor absoluto) menor que um –, então a primeira diferença do processo é estacionária. (pt)
  • 在计量经济学的自回归模型裡,如果在裡,系数,那么一个单位根是存在的。其中: 是在t 时刻的变量,b 是斜率系数, 是误差项。 如果单位根存在,时间序列可以说是有一个随机趋向。 (zh)
  • In probability theory and statistics, a unit root is a feature of some stochastic processes (such as random walks) that can cause problems in statistical inference involving time series models. A linear stochastic process has a unit root if 1 is a root of the process's characteristic equation. Such a process is non-stationary but does not always have a trend. If a root of the process's characteristic equation is larger than 1, then it is called an explosive process, even though such processes are sometimes inaccurately called unit roots processes. (en)
rdfs:label
  • Einheitswurzel (Zeitreihenanalyse) (de)
  • Raíz unitaria (es)
  • 単位根 (ja)
  • Raiz unitária (pt)
  • Unit root (en)
  • Единичный корень (ru)
  • 单位根 (计量经济学) (zh)
owl:differentFrom
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License