An Entity of Type: PhysicalEntity100001930, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org:8891

In geometry, given a triangle ABC, there exist unique points A´, B´, and C´ on the sides BC, CA, AB respectively, such that: * A´, B´, and C´ partition the perimeter of the triangle into three equal-length pieces. That is,C´B + BA´ = B´A + AC´ = A´C + CB´. * The three lines AA´, BB´, and CC´ meet in a point, the trisected perimeter point. This is point X369 in Clark Kimberling's Encyclopedia of Triangle Centers. Uniqueness and a formula for the trilinear coordinates of X369 were shown by Peter Yff late in the twentieth century. The formula involves the unique real root of a cubic equation.

Property Value
dbo:abstract
  • Dalam geometri, diberikan sebuah segitiga , terdapat titik-titik tunggal , , dan di sisi , , , seperti: , , dan membagi keliling dari segitiga menjadi tiga potongan dengan panjang yang sama, yaitu, . Tiga garis , , dan bertemu dalam sebuah titik, titik keliling bagi tiga sama (bahasa Inggris: trisected perimeter point). Ini adalah titik dalam Encyclopedia of Triangle Centers Clark Kimberling. Ketunggalan dan sebuah rumus untuk dari ditunjukkan oleh Peter Yff di akhir abad keduapuluh. Rumus tersebut melibatkan akar real tunggal dari sebuah persamaan kubik. (in)
  • In geometry, given a triangle ABC, there exist unique points A´, B´, and C´ on the sides BC, CA, AB respectively, such that: * A´, B´, and C´ partition the perimeter of the triangle into three equal-length pieces. That is,C´B + BA´ = B´A + AC´ = A´C + CB´. * The three lines AA´, BB´, and CC´ meet in a point, the trisected perimeter point. This is point X369 in Clark Kimberling's Encyclopedia of Triangle Centers. Uniqueness and a formula for the trilinear coordinates of X369 were shown by Peter Yff late in the twentieth century. The formula involves the unique real root of a cubic equation. (en)
  • Em geometria, dado um triângulo ABC, existem os únicos pontos A´, B´ e C´ sobre os lados BC, CA e AB, respectivamente, tal que: * A´, B´ e C´ particionam o perímetro do triângulo em três trechos de igual comprimento. Ou seja,C´B + BA´ = B´A + AC´ = A´C + CB´. * As três linhas AA´, BB´ e CC´ cruzam-se em um ponto, o ponto de perímetro trisseccionado. Este é o ponto X369 na Encyclopedia of Triangle Centers de Clark Kimberling. A unicidade e uma fórmula para as coordenadas trilineares X369 foram mostradas por no final do século XX. A fórmula envolve a raiz real única de uma equação cúbica. (pt)
dbo:thumbnail
dbo:wikiPageID
  • 14957244 (xsd:integer)
dbo:wikiPageLength
  • 1424 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 784482893 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • Dalam geometri, diberikan sebuah segitiga , terdapat titik-titik tunggal , , dan di sisi , , , seperti: , , dan membagi keliling dari segitiga menjadi tiga potongan dengan panjang yang sama, yaitu, . Tiga garis , , dan bertemu dalam sebuah titik, titik keliling bagi tiga sama (bahasa Inggris: trisected perimeter point). Ini adalah titik dalam Encyclopedia of Triangle Centers Clark Kimberling. Ketunggalan dan sebuah rumus untuk dari ditunjukkan oleh Peter Yff di akhir abad keduapuluh. Rumus tersebut melibatkan akar real tunggal dari sebuah persamaan kubik. (in)
  • In geometry, given a triangle ABC, there exist unique points A´, B´, and C´ on the sides BC, CA, AB respectively, such that: * A´, B´, and C´ partition the perimeter of the triangle into three equal-length pieces. That is,C´B + BA´ = B´A + AC´ = A´C + CB´. * The three lines AA´, BB´, and CC´ meet in a point, the trisected perimeter point. This is point X369 in Clark Kimberling's Encyclopedia of Triangle Centers. Uniqueness and a formula for the trilinear coordinates of X369 were shown by Peter Yff late in the twentieth century. The formula involves the unique real root of a cubic equation. (en)
  • Em geometria, dado um triângulo ABC, existem os únicos pontos A´, B´ e C´ sobre os lados BC, CA e AB, respectivamente, tal que: * A´, B´ e C´ particionam o perímetro do triângulo em três trechos de igual comprimento. Ou seja,C´B + BA´ = B´A + AC´ = A´C + CB´. * As três linhas AA´, BB´ e CC´ cruzam-se em um ponto, o ponto de perímetro trisseccionado. Este é o ponto X369 na Encyclopedia of Triangle Centers de Clark Kimberling. A unicidade e uma fórmula para as coordenadas trilineares X369 foram mostradas por no final do século XX. A fórmula envolve a raiz real única de uma equação cúbica. (pt)
rdfs:label
  • Titik keliling bagi tiga sama (in)
  • Ponto de perímetro trisseccionado (pt)
  • Trisected perimeter point (en)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License