An Entity of Type: WikicatTopologicalGroups, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org:8891

In mathematics, a topological semigroup is a semigroup that is simultaneously a topological space, and whose semigroup operation is continuous. Every topological group is a topological semigroup.

Property Value
dbo:abstract
  • En mathématiques, un semi - groupe topologique est un semi - groupe muni d'une structure d'espace topologique telle que la loi du semi groupe soit une application continue. Chaque groupe topologique est un semi-groupe topologique. (fr)
  • In mathematics, a topological semigroup is a semigroup that is simultaneously a topological space, and whose semigroup operation is continuous. Every topological group is a topological semigroup. (en)
  • Inom matematiken är en topologisk semigrupp en semigrupp som samtidigt är ett topologiskt rum, och vars semigrupp-funktion är kontinuerlig. En topologisk grupp är en topologisk semigrupp. (sv)
dbo:wikiPageID
  • 17359213 (xsd:integer)
dbo:wikiPageLength
  • 1272 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1058519188 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • En mathématiques, un semi - groupe topologique est un semi - groupe muni d'une structure d'espace topologique telle que la loi du semi groupe soit une application continue. Chaque groupe topologique est un semi-groupe topologique. (fr)
  • In mathematics, a topological semigroup is a semigroup that is simultaneously a topological space, and whose semigroup operation is continuous. Every topological group is a topological semigroup. (en)
  • Inom matematiken är en topologisk semigrupp en semigrupp som samtidigt är ett topologiskt rum, och vars semigrupp-funktion är kontinuerlig. En topologisk grupp är en topologisk semigrupp. (sv)
rdfs:label
  • Semi-groupe topologique (fr)
  • Topological semigroup (en)
  • Topologisk semigrupp (sv)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License