dbo:abstract
|
- In mathematics, specifically representation theory, tilting theory describes a way to relate the module categories of two algebras using so-called tilting modules and associated tilting functors. Here, the second algebra is the endomorphism algebra of a tilting module over the first algebra. Tilting theory was motivated by the introduction of reflection functors by Joseph Bernšteĭn, Israel Gelfand, and V. A. Ponomarev; these functors were used to relate representations of two quivers. These functors were reformulated by Maurice Auslander, , and Idun Reiten, and generalized by Sheila Brenner and Michael C. R. Butler who introduced tilting functors. Dieter Happel and Claus Michael Ringel defined tilted algebras and tilting modules as further generalizations of this. (en)
- 数学、特に表現論において、傾理論(けいりろん、英: tilting theory)は多元環上の加群の圏をいわゆる傾加群(けいかぐん、英: tilting module)と付随する傾関手(けいかんしゅ、英: tilting functor)によって関連づける方法を記述する。ここで一方の多元環は他方の多元環上の傾加群の自己準同型多元環である。 傾理論は によって導入された鏡映関手によって動機づけられた。これらの関手は箙の表現を関連づけていた。これらの関手は によって再定式化され、(傾関手を導入した) によって一般化された。 (ja)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 14473 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:align
| |
dbp:authorlink
|
- Idun Reiten (en)
- Maurice Auslander (en)
- Joseph Bernstein (en)
- Israel Gelfand (en)
- Maria Platzeck (en)
|
dbp:b
| |
dbp:first
|
- Israel (en)
- Joseph (en)
- Maurice (en)
- L. (en)
- Dieter (en)
- Sheila (en)
- Idun (en)
- María Inés (en)
- V. A. (en)
- Claus Michael (en)
- Michael C. R. (en)
|
dbp:id
| |
dbp:last
|
- Butler (en)
- Brenner (en)
- Ponomarev (en)
- Unger (en)
- Happel (en)
- Ringel (en)
- Reiten (en)
- Auslander (en)
- Gelfand (en)
- Platzeck (en)
- Bernšteĭn (en)
|
dbp:p
|
- 1 (xsd:integer)
- B (en)
- i (en)
|
dbp:quote
|
- It turns out that there are applications of our functors which make use of the analogous transformations which we like to think of as a change of basis for a fixed root-system — a tilting of the axes relative to the roots which results in a different subset of roots lying in the positive cone. … For this reason, and because the word 'tilt' inflects easily, we call our functors or simply . (en)
|
dbp:title
| |
dbp:width
| |
dbp:wikiPageUsesTemplate
| |
dbp:year
|
- 1973 (xsd:integer)
- 1979 (xsd:integer)
- 1980 (xsd:integer)
- 1982 (xsd:integer)
|
dcterms:subject
| |
rdfs:comment
|
- 数学、特に表現論において、傾理論(けいりろん、英: tilting theory)は多元環上の加群の圏をいわゆる傾加群(けいかぐん、英: tilting module)と付随する傾関手(けいかんしゅ、英: tilting functor)によって関連づける方法を記述する。ここで一方の多元環は他方の多元環上の傾加群の自己準同型多元環である。 傾理論は によって導入された鏡映関手によって動機づけられた。これらの関手は箙の表現を関連づけていた。これらの関手は によって再定式化され、(傾関手を導入した) によって一般化された。 (ja)
- In mathematics, specifically representation theory, tilting theory describes a way to relate the module categories of two algebras using so-called tilting modules and associated tilting functors. Here, the second algebra is the endomorphism algebra of a tilting module over the first algebra. (en)
|
rdfs:label
|
- 傾理論 (ja)
- Tilting theory (en)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageDisambiguates
of | |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |