In the geometry of hyperbolic 5-space, the tesseractic honeycomb honeycomb is one of five paracompact regular space-filling tessellations (or honeycombs). It is called paracompact because it has infinite vertex figures, with all vertices as ideal points at infinity. With Schläfli symbol {4,3,3,4,3}, it has three tesseractic honeycombs around each cell. It is dual to the order-4 24-cell honeycomb honeycomb.