About: Ba space

An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org:8891

In mathematics, the ba space of an algebra of sets is the Banach space consisting of all bounded and finitely additive signed measures on . The norm is defined as the variation, that is If Σ is a sigma-algebra, then the space is defined as the subset of consisting of countably additive measures. The notation ba is a mnemonic for bounded additive and ca is short for countably additive. If X is a topological space, and Σ is the sigma-algebra of Borel sets in X, then is the subspace of consisting of all regular Borel measures on X.

Property Value
dbo:abstract
  • In mathematics, the ba space of an algebra of sets is the Banach space consisting of all bounded and finitely additive signed measures on . The norm is defined as the variation, that is If Σ is a sigma-algebra, then the space is defined as the subset of consisting of countably additive measures. The notation ba is a mnemonic for bounded additive and ca is short for countably additive. If X is a topological space, and Σ is the sigma-algebra of Borel sets in X, then is the subspace of consisting of all regular Borel measures on X. (en)
  • 数学において、集合代数 Σ に対する ba-空間(baくうかん、英: ba space)ba(Σ) とは、Σ 上のすべての有界かつ有限加法的な符号付測度からなるバナッハ空間である。ノルムは次のように ‖ ν ‖ := |ν|(X) で与えられる。 Σ が σ-代数となるとき、ba(Σ) の部分集合として可算加法的測度からなる空間 ca(Σ) が定義される 。ここで記号 ba は「有界加法的(bounded additive)」にちなみ、ca は「可算加法的(countably additive)」にちなむ。 X が位相空間で、Σ が X におけるボレル集合全体の成す σ-代数であるとき、ca(Σ) の部分空間として、X 上のすべての正則ボレル測度からなる空間 rca(X) を考えることができる 。 (ja)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 629005 (xsd:integer)
dbo:wikiPageLength
  • 6008 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1090884939 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • In mathematics, the ba space of an algebra of sets is the Banach space consisting of all bounded and finitely additive signed measures on . The norm is defined as the variation, that is If Σ is a sigma-algebra, then the space is defined as the subset of consisting of countably additive measures. The notation ba is a mnemonic for bounded additive and ca is short for countably additive. If X is a topological space, and Σ is the sigma-algebra of Borel sets in X, then is the subspace of consisting of all regular Borel measures on X. (en)
  • 数学において、集合代数 Σ に対する ba-空間(baくうかん、英: ba space)ba(Σ) とは、Σ 上のすべての有界かつ有限加法的な符号付測度からなるバナッハ空間である。ノルムは次のように ‖ ν ‖ := |ν|(X) で与えられる。 Σ が σ-代数となるとき、ba(Σ) の部分集合として可算加法的測度からなる空間 ca(Σ) が定義される 。ここで記号 ba は「有界加法的(bounded additive)」にちなみ、ca は「可算加法的(countably additive)」にちなむ。 X が位相空間で、Σ が X におけるボレル集合全体の成す σ-代数であるとき、ca(Σ) の部分空間として、X 上のすべての正則ボレル測度からなる空間 rca(X) を考えることができる 。 (ja)
rdfs:label
  • Ba space (en)
  • Ba空間 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License