An Entity of Type: Integer113728499, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org:8891

In mathematics, a quaternionic structure or Q-structure is an axiomatic system that abstracts the concept of a quaternion algebra over a field. A quaternionic structure is a triple (G, Q, q) where G is an elementary abelian group of exponent 2 with a distinguished element −1, Q is a pointed set with distinguished element 1, and q is a symmetric surjection G×G → Q satisfying axioms

Property Value
dbo:abstract
  • In mathematics, a quaternionic structure or Q-structure is an axiomatic system that abstracts the concept of a quaternion algebra over a field. A quaternionic structure is a triple (G, Q, q) where G is an elementary abelian group of exponent 2 with a distinguished element −1, Q is a pointed set with distinguished element 1, and q is a symmetric surjection G×G → Q satisfying axioms Every field F gives rise to a Q-structure by taking G to be F∗/F∗2, Q the set of Brauer classes of quaternion algebras in the Brauer group of F with the split quaternion algebra as distinguished element and q(a,b) the quaternion algebra (a,b)F. (en)
dbo:wikiPageID
  • 39227817 (xsd:integer)
dbo:wikiPageLength
  • 1698 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1089529484 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • In mathematics, a quaternionic structure or Q-structure is an axiomatic system that abstracts the concept of a quaternion algebra over a field. A quaternionic structure is a triple (G, Q, q) where G is an elementary abelian group of exponent 2 with a distinguished element −1, Q is a pointed set with distinguished element 1, and q is a symmetric surjection G×G → Q satisfying axioms (en)
rdfs:label
  • Quaternionic structure (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License