In physics and mathematics, the Pauli group on 1 qubit is the 16-element matrix group consisting of the 2 × 2 identity matrix and all of the Pauli matrices , together with the products of these matrices with the factors and : . The Pauli group is generated by the Pauli matrices, and like them it is named after Wolfgang Pauli. The Pauli group on qubits, , is the group generated by the operators described above applied to each of qubits in the tensor product Hilbert space . As an abstract group, is the central product of a cyclic group of order 4 and the dihedral group of order 8.
Property | Value |
---|---|
dbo:abstract |
|
dbo:thumbnail | |
dbo:wikiPageID |
|
dbo:wikiPageLength |
|
dbo:wikiPageRevisionID |
|
dbo:wikiPageWikiLink |
|
dbp:wikiPageUsesTemplate | |
dcterms:subject | |
rdf:type | |
rdfs:comment |
|
rdfs:label |
|
owl:sameAs | |
prov:wasDerivedFrom | |
foaf:depiction | |
foaf:isPrimaryTopicOf | |
is dbo:knownFor of | |
is dbo:wikiPageWikiLink of |
|
is foaf:primaryTopic of |