dbo:abstract
|
- In mathematics, a differentiable manifold of dimension n is called parallelizable if there exist smooth vector fields on the manifold, such that at every point of the tangent vectorsprovide a basis of the tangent space at . Equivalently, the tangent bundle is a trivial bundle, so that the associated principal bundle of linear frames has a global section on A particular choice of such a basis of vector fields on is called a parallelization (or an absolute parallelism) of . (en)
- Une variété différentielle M de classe Ck est dite parallélisablesi son fibré tangent est trivial, c'est-à-dire isomorphe, en tant que fibré vectoriel,à , où est un espace vectoriel de dimension Il revient au même de dire qu'il existe un espace vectoriel E et une forme différentielle telle que pour tout , est un isomorphisme d'espaces vectoriels ; ou encore qu'il existe champs de vecteurs linéairement indépendants en tout point de M, autrement dit un champ de repères. Un isomorphisme de fibrés vectoriels entre et s'appelle un parallèlisme. (fr)
- 미분위상수학에서 평행화 가능 다양체(平行化可能多樣體, 영어: parallelizable manifold)는 그 접다발이 자명한 매끄러운 다양체이다. (ko)
- Параллелизуемое многообразие — многообразие размерности , допускающее поле реперов , то есть линейно независимых в каждой точке векторных полей . Поле задает изоморфизм касательного расслоения на , сопоставляющий касательному вектору его координаты относительно репера и его начало. Поэтому параллелизуемое многообразие можно также определить как многообразие, имеющее касательное расслоение. (ru)
- 数学中,一个 n 维光滑流形 M 为可平行化流形 是指具有向量场 V1, ..., Vn, 使得在 M 中任何一点 P 的切向量 Vi, P 组成 P 点切空间的一组基。等价地说,切丛是平凡丛,所以相伴的线性标架主丛有一个 M 的整体截面。 选取 M 上这样特定的一组向量场的基称为 M 的一个平行化或绝对平行化。 (zh)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 5641 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
rdf:type
| |
rdfs:comment
|
- In mathematics, a differentiable manifold of dimension n is called parallelizable if there exist smooth vector fields on the manifold, such that at every point of the tangent vectorsprovide a basis of the tangent space at . Equivalently, the tangent bundle is a trivial bundle, so that the associated principal bundle of linear frames has a global section on A particular choice of such a basis of vector fields on is called a parallelization (or an absolute parallelism) of . (en)
- Une variété différentielle M de classe Ck est dite parallélisablesi son fibré tangent est trivial, c'est-à-dire isomorphe, en tant que fibré vectoriel,à , où est un espace vectoriel de dimension Il revient au même de dire qu'il existe un espace vectoriel E et une forme différentielle telle que pour tout , est un isomorphisme d'espaces vectoriels ; ou encore qu'il existe champs de vecteurs linéairement indépendants en tout point de M, autrement dit un champ de repères. Un isomorphisme de fibrés vectoriels entre et s'appelle un parallèlisme. (fr)
- 미분위상수학에서 평행화 가능 다양체(平行化可能多樣體, 영어: parallelizable manifold)는 그 접다발이 자명한 매끄러운 다양체이다. (ko)
- Параллелизуемое многообразие — многообразие размерности , допускающее поле реперов , то есть линейно независимых в каждой точке векторных полей . Поле задает изоморфизм касательного расслоения на , сопоставляющий касательному вектору его координаты относительно репера и его начало. Поэтому параллелизуемое многообразие можно также определить как многообразие, имеющее касательное расслоение. (ru)
- 数学中,一个 n 维光滑流形 M 为可平行化流形 是指具有向量场 V1, ..., Vn, 使得在 M 中任何一点 P 的切向量 Vi, P 组成 P 点切空间的一组基。等价地说,切丛是平凡丛,所以相伴的线性标架主丛有一个 M 的整体截面。 选取 M 上这样特定的一组向量场的基称为 M 的一个平行化或绝对平行化。 (zh)
|
rdfs:label
|
- Variété parallélisable (fr)
- 평행화 가능 다양체 (ko)
- Parallelizable manifold (en)
- Параллелизуемое многообразие (ru)
- 可平行化流形 (zh)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |