An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org:8891

In number theory and enumerative combinatorics, the ordered Bell numbers or Fubini numbers count the number of weak orderings on a set of n elements (orderings of the elements into a sequence allowing ties, such as might arise as the outcome of a horse race). Starting from n = 0, these numbers are 1, 1, 3, 13, 75, 541, 4683, 47293, 545835, 7087261, 102247563, ... (sequence in the OEIS).

Property Value
dbo:abstract
  • In number theory and enumerative combinatorics, the ordered Bell numbers or Fubini numbers count the number of weak orderings on a set of n elements (orderings of the elements into a sequence allowing ties, such as might arise as the outcome of a horse race). Starting from n = 0, these numbers are 1, 1, 3, 13, 75, 541, 4683, 47293, 545835, 7087261, 102247563, ... (sequence in the OEIS). The ordered Bell numbers may be computed via a summation formula involving binomial coefficients, or by using a recurrence relation. Along with the weak orderings, they count several other types of combinatorial objects that have a bijective correspondence to the weak orderings, such as the ordered multiplicative partitions of a squarefree number or the faces of all dimensions of a permutohedron (e.g. the sum of faces of all dimensions in the truncated octahedron is 1 + 14 + 36 + 24 = 75). (en)
  • En mathématiques, et plus particulièrement en combinatoire, les nombres de Fubini ou nombres de Bell ordonnés dénombrent les partitions ordonnées d'un ensemble E à n éléments, c'est-à-dire les familles finies de parties non vides disjointes de E dont la réunion est égale à E. Par exemple, pour n = 3, il y a 13 partitions ordonnées de : 6 du type , 3 du type , 3 du type , plus . (fr)
dbo:thumbnail
dbo:wikiPageID
  • 6992164 (xsd:integer)
dbo:wikiPageLength
  • 17311 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1122565116 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • En mathématiques, et plus particulièrement en combinatoire, les nombres de Fubini ou nombres de Bell ordonnés dénombrent les partitions ordonnées d'un ensemble E à n éléments, c'est-à-dire les familles finies de parties non vides disjointes de E dont la réunion est égale à E. Par exemple, pour n = 3, il y a 13 partitions ordonnées de : 6 du type , 3 du type , 3 du type , plus . (fr)
  • In number theory and enumerative combinatorics, the ordered Bell numbers or Fubini numbers count the number of weak orderings on a set of n elements (orderings of the elements into a sequence allowing ties, such as might arise as the outcome of a horse race). Starting from n = 0, these numbers are 1, 1, 3, 13, 75, 541, 4683, 47293, 545835, 7087261, 102247563, ... (sequence in the OEIS). (en)
rdfs:label
  • Nombre de Fubini (fr)
  • Ordered Bell number (en)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License