About: Opposite ring

An Entity of Type: anatomical structure, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org:8891

In mathematics, specifically abstract algebra, the opposite of a ring is another ring with the same elements and addition operation, but with the multiplication performed in the reverse order. More explicitly, the opposite of a ring (R, +, ⋅) is the ring (R, +, ∗) whose multiplication ∗ is defined by a ∗ b = b ⋅ a for all a, b in R. The opposite ring can be used to define multimodules, a generalization of bimodules. They also help clarify the relationship between left and right modules (see ).

Property Value
dbo:abstract
  • Der Gegenring zu einem Ring ist eine Konstruktion aus dem mathematischen Teilgebiet der Ringtheorie. Der Gegenring zu einem Ring entsteht dadurch, dass man bei der Multiplikation die Faktoren vertauscht. (de)
  • En algèbre, l'anneau opposé A0 ou Aop d'un anneau A possède le même groupe additif sous-jacent que A et sa multiplication est effectuée dans l'ordre opposé : si l'on note et les multiplications respectives de A et Aop, on a . La notion d'anneau opposé permet d'unifier l'étude des modules à gauche et des modules à droite, car les modules à droite sur un anneau sont exactement les modules à gauche sur l'anneau opposé. (fr)
  • In mathematics, specifically abstract algebra, the opposite of a ring is another ring with the same elements and addition operation, but with the multiplication performed in the reverse order. More explicitly, the opposite of a ring (R, +, ⋅) is the ring (R, +, ∗) whose multiplication ∗ is defined by a ∗ b = b ⋅ a for all a, b in R. The opposite ring can be used to define multimodules, a generalization of bimodules. They also help clarify the relationship between left and right modules (see ). Monoids, groups, rings, and algebras can all be viewed as categories with a single object. The construction of the opposite category generalizes the opposite group, opposite ring, etc. (en)
  • 代数学において、環の逆、逆転、反対あるいは反転 (opposite) は同じ元と同じ加法演算をもつ環であって、積が逆順で行われるものである。 より正確には、環 (R, +, ·) の反転は環 (R, +, *) であって、積 '*' が a * b = b · a によって定義される。(環の加法は定義から常に可換である。) (ja)
  • In de ringtheorie, een deelgebied van de wiskunde, is het tegenovergestelde van een ring een andere ring, aangeduid met of met dezelfde elementen en dezelfde optellingsoperatie, maar waarin de vermenigvuldigingsoperatie in de omgekeerde volgorde wordt uitgevoerd. Preciezer uitgedrukt is de tegenovergestelde van een ring de ring waarin de vermenigvuldiging gedefinieerd is als De operatie 'optellen' is in ringen per definitie altijd commutatief. (nl)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 3129323 (xsd:integer)
dbo:wikiPageLength
  • 11205 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1124246478 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • Der Gegenring zu einem Ring ist eine Konstruktion aus dem mathematischen Teilgebiet der Ringtheorie. Der Gegenring zu einem Ring entsteht dadurch, dass man bei der Multiplikation die Faktoren vertauscht. (de)
  • En algèbre, l'anneau opposé A0 ou Aop d'un anneau A possède le même groupe additif sous-jacent que A et sa multiplication est effectuée dans l'ordre opposé : si l'on note et les multiplications respectives de A et Aop, on a . La notion d'anneau opposé permet d'unifier l'étude des modules à gauche et des modules à droite, car les modules à droite sur un anneau sont exactement les modules à gauche sur l'anneau opposé. (fr)
  • 代数学において、環の逆、逆転、反対あるいは反転 (opposite) は同じ元と同じ加法演算をもつ環であって、積が逆順で行われるものである。 より正確には、環 (R, +, ·) の反転は環 (R, +, *) であって、積 '*' が a * b = b · a によって定義される。(環の加法は定義から常に可換である。) (ja)
  • In de ringtheorie, een deelgebied van de wiskunde, is het tegenovergestelde van een ring een andere ring, aangeduid met of met dezelfde elementen en dezelfde optellingsoperatie, maar waarin de vermenigvuldigingsoperatie in de omgekeerde volgorde wordt uitgevoerd. Preciezer uitgedrukt is de tegenovergestelde van een ring de ring waarin de vermenigvuldiging gedefinieerd is als De operatie 'optellen' is in ringen per definitie altijd commutatief. (nl)
  • In mathematics, specifically abstract algebra, the opposite of a ring is another ring with the same elements and addition operation, but with the multiplication performed in the reverse order. More explicitly, the opposite of a ring (R, +, ⋅) is the ring (R, +, ∗) whose multiplication ∗ is defined by a ∗ b = b ⋅ a for all a, b in R. The opposite ring can be used to define multimodules, a generalization of bimodules. They also help clarify the relationship between left and right modules (see ). (en)
rdfs:label
  • Gegenring (de)
  • Anneau opposé (fr)
  • 反転環 (ja)
  • Opposite ring (en)
  • Tegenovergestelde ring (nl)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License