An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org:8891

Two theorems in the mathematical field of Riemannian geometry bear the name Myers–Steenrod theorem, both from a 1939 paper by Myers and Steenrod. The first states that every distance-preserving map (that is, an isometry of metric spaces) between two connected Riemannian manifolds is actually a smooth isometry of Riemannian manifolds. A simpler proof was subsequently given by Richard Palais in 1957. The main difficulty lies in showing that a distance-preserving map, which is a priori only continuous, is actually differentiable.

Property Value
dbo:abstract
  • Der Satz von Myers-Steenrod ist ein Lehrsatz aus dem mathematischen Gebiet der Differentialgeometrie. Er besagt, dass die Isometriegruppe jeder vollständigen Riemannschen Mannigfaltigkeit eine Lie-Gruppe ist. Ihre Dimension ist höchstens . Der Satz stammt von Norman Steenrod und Sumner Byron Myers. (de)
  • Two theorems in the mathematical field of Riemannian geometry bear the name Myers–Steenrod theorem, both from a 1939 paper by Myers and Steenrod. The first states that every distance-preserving map (that is, an isometry of metric spaces) between two connected Riemannian manifolds is actually a smooth isometry of Riemannian manifolds. A simpler proof was subsequently given by Richard Palais in 1957. The main difficulty lies in showing that a distance-preserving map, which is a priori only continuous, is actually differentiable. The second theorem, which is much more difficult to prove, states that the isometry group of a Riemannian manifold is a Lie group. For instance, the group of isometries of the two-dimensional unit sphere is the orthogonal group O(3). (en)
  • In de Riemann-meetkunde, een deelgebied van de wiskunde, dragen twee stellingen de naam stelling van Myers-Steenrod. Beide hebben hun naam te danken aan een artikel uit 1939 van de wiskundigen en . (nl)
  • Теорема Майерса — Стинрода — пара тесно связанных классических утверждений о группе изометрий риманова многообразия. (ru)
dbo:wikiPageID
  • 33844541 (xsd:integer)
dbo:wikiPageLength
  • 1751 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1053923229 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • Der Satz von Myers-Steenrod ist ein Lehrsatz aus dem mathematischen Gebiet der Differentialgeometrie. Er besagt, dass die Isometriegruppe jeder vollständigen Riemannschen Mannigfaltigkeit eine Lie-Gruppe ist. Ihre Dimension ist höchstens . Der Satz stammt von Norman Steenrod und Sumner Byron Myers. (de)
  • In de Riemann-meetkunde, een deelgebied van de wiskunde, dragen twee stellingen de naam stelling van Myers-Steenrod. Beide hebben hun naam te danken aan een artikel uit 1939 van de wiskundigen en . (nl)
  • Теорема Майерса — Стинрода — пара тесно связанных классических утверждений о группе изометрий риманова многообразия. (ru)
  • Two theorems in the mathematical field of Riemannian geometry bear the name Myers–Steenrod theorem, both from a 1939 paper by Myers and Steenrod. The first states that every distance-preserving map (that is, an isometry of metric spaces) between two connected Riemannian manifolds is actually a smooth isometry of Riemannian manifolds. A simpler proof was subsequently given by Richard Palais in 1957. The main difficulty lies in showing that a distance-preserving map, which is a priori only continuous, is actually differentiable. (en)
rdfs:label
  • Satz von Myers-Steenrod (de)
  • Myers–Steenrod theorem (en)
  • Stelling van Myers-Steenrod (nl)
  • Теорема Майерса — Стинрода (ru)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License