An Entity of Type: device, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org:8891

In algebraic geometry, the Mumford–Tate group (or Hodge group) MT(F) constructed from a Hodge structure F is a certain algebraic group G. When F is given by a rational representation of an algebraic torus, the definition of G is as the Zariski closure of the image in the representation of the circle group, over the rational numbers. Mumford introduced Mumford–Tate groups over the complex numbers under the name of Hodge groups. introduced the p-adic analogue of Mumford's construction for Hodge–Tate modules, using the work of Tate on p-divisible groups, and named them Mumford–Tate groups.

Property Value
dbo:abstract
  • In algebraic geometry, the Mumford–Tate group (or Hodge group) MT(F) constructed from a Hodge structure F is a certain algebraic group G. When F is given by a rational representation of an algebraic torus, the definition of G is as the Zariski closure of the image in the representation of the circle group, over the rational numbers. Mumford introduced Mumford–Tate groups over the complex numbers under the name of Hodge groups. introduced the p-adic analogue of Mumford's construction for Hodge–Tate modules, using the work of Tate on p-divisible groups, and named them Mumford–Tate groups. (en)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 27137708 (xsd:integer)
dbo:wikiPageLength
  • 6181 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1076649568 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • In algebraic geometry, the Mumford–Tate group (or Hodge group) MT(F) constructed from a Hodge structure F is a certain algebraic group G. When F is given by a rational representation of an algebraic torus, the definition of G is as the Zariski closure of the image in the representation of the circle group, over the rational numbers. Mumford introduced Mumford–Tate groups over the complex numbers under the name of Hodge groups. introduced the p-adic analogue of Mumford's construction for Hodge–Tate modules, using the work of Tate on p-divisible groups, and named them Mumford–Tate groups. (en)
rdfs:label
  • Mumford–Tate group (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License