In algebra, a Mori domain, named after Yoshiro Mori by Querré , is an integral domain satisfying the ascending chain condition on integral divisorial ideals. Noetherian domains and Krull domains both have this property. A commutative ring is a Krull domain if and only if it is a Mori domain and completely integrally closed. A polynomial ring over a Mori domain need not be a Mori domain. Also, the complete integral closure of a Mori domain need not be a Mori (or, equivalently, Krull) domain.
Property | Value |
---|---|
dbo:abstract |
|
dbo:wikiPageExternalLink | |
dbo:wikiPageID |
|
dbo:wikiPageLength |
|
dbo:wikiPageRevisionID |
|
dbo:wikiPageWikiLink | |
dbp:wikiPageUsesTemplate | |
dcterms:subject | |
gold:hypernym | |
rdf:type | |
rdfs:comment |
|
rdfs:label |
|
owl:differentFrom | |
owl:sameAs | |
prov:wasDerivedFrom | |
foaf:isPrimaryTopicOf | |
is dbo:wikiPageDisambiguates of | |
is dbo:wikiPageRedirects of | |
is dbo:wikiPageWikiLink of | |
is foaf:primaryTopic of |