An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org:8891

In mathematics, a modular invariant of a group is an invariant of a finite group acting on a vector space of positive characteristic (usually dividing the order of the group). The study of modular invariants was originated in about 1914 by .

Property Value
dbo:abstract
  • In mathematics, a modular invariant of a group is an invariant of a finite group acting on a vector space of positive characteristic (usually dividing the order of the group). The study of modular invariants was originated in about 1914 by . (en)
  • Em matemática, uma invariante modular de um grupo é um invariante de um grupo finito agindo em um espaço vetorial de característica positiva (geralmente dividindo a ordem do grupo). O estudo de invariantes modulares foi originado por volta de 1914 por . (pt)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 29827348 (xsd:integer)
dbo:wikiPageLength
  • 5042 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 992942391 (xsd:integer)
dbo:wikiPageWikiLink
dbp:b
  • i (en)
dbp:p
  • q'e'j (en)
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdfs:comment
  • In mathematics, a modular invariant of a group is an invariant of a finite group acting on a vector space of positive characteristic (usually dividing the order of the group). The study of modular invariants was originated in about 1914 by . (en)
  • Em matemática, uma invariante modular de um grupo é um invariante de um grupo finito agindo em um espaço vetorial de característica positiva (geralmente dividindo a ordem do grupo). O estudo de invariantes modulares foi originado por volta de 1914 por . (pt)
rdfs:label
  • Modular invariant theory (en)
  • Invariante modular (pt)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License