An Entity of Type: Person100007846, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org:8891

Markov chain geostatistics uses Markov chain spatial models, simulation algorithms and associated spatial correlation measures (e.g., transiogram) based on the Markov chain random field theory, which extends a single Markov chain into a multi-dimensional random field for geostatistical modeling. A Markov chain random field is still a single spatial Markov chain. The spatial Markov chain moves or jumps in a space and decides its state at any unobserved location through interactions with its nearest known neighbors in different directions. The data interaction process can be well explained as a local sequential Bayesian updating process within a neighborhood. Because single-step transition probability matrices are difficult to estimate from sparse sample data and are impractical in represent

Property Value
dbo:abstract
  • Markov chain geostatistics uses Markov chain spatial models, simulation algorithms and associated spatial correlation measures (e.g., transiogram) based on the Markov chain random field theory, which extends a single Markov chain into a multi-dimensional random field for geostatistical modeling. A Markov chain random field is still a single spatial Markov chain. The spatial Markov chain moves or jumps in a space and decides its state at any unobserved location through interactions with its nearest known neighbors in different directions. The data interaction process can be well explained as a local sequential Bayesian updating process within a neighborhood. Because single-step transition probability matrices are difficult to estimate from sparse sample data and are impractical in representing the complex spatial heterogeneity of states, the transiogram, which is defined as a transition probability function over the distance lag, is proposed as the accompanying spatial measure of Markov chain random fields. (en)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 1802160 (xsd:integer)
dbo:wikiPageLength
  • 1859 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1043895505 (xsd:integer)
dbo:wikiPageWikiLink
dcterms:subject
rdf:type
rdfs:comment
  • Markov chain geostatistics uses Markov chain spatial models, simulation algorithms and associated spatial correlation measures (e.g., transiogram) based on the Markov chain random field theory, which extends a single Markov chain into a multi-dimensional random field for geostatistical modeling. A Markov chain random field is still a single spatial Markov chain. The spatial Markov chain moves or jumps in a space and decides its state at any unobserved location through interactions with its nearest known neighbors in different directions. The data interaction process can be well explained as a local sequential Bayesian updating process within a neighborhood. Because single-step transition probability matrices are difficult to estimate from sparse sample data and are impractical in represent (en)
rdfs:label
  • Markov chain geostatistics (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License