An Entity of Type: software, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org:8891

In graph theory, particularly in the theory of hypergraphs, the line graph of a hypergraph H, denoted L(H), is the graph whose vertex set is the set of the hyperedges of H, with two vertices adjacent in L(H) when their corresponding hyperedges have a nonempty intersection in H. In other words, L(H) is the intersection graph of a family of finite sets. It is a generalization of the line graph of a graph. A hypergraph is linear if each pair of hyperedges intersects in at most one vertex. Every graph is the line graph, not only of some hypergraph, but of some linear hypergraph.

Property Value
dbo:abstract
  • In graph theory, particularly in the theory of hypergraphs, the line graph of a hypergraph H, denoted L(H), is the graph whose vertex set is the set of the hyperedges of H, with two vertices adjacent in L(H) when their corresponding hyperedges have a nonempty intersection in H. In other words, L(H) is the intersection graph of a family of finite sets. It is a generalization of the line graph of a graph. Questions about line graphs of hypergraphs are often generalizations of questions about line graphs of graphs. For instance, a hypergraph whose edges all have size k is called k-uniform. (A 2-uniform hypergraph is a graph). In hypergraph theory, it is often natural to require that hypergraphs be k-uniform. Every graph is the line graph of some hypergraph, but, given a fixed edge size k, not every graph is a line graph of some k-uniform hypergraph. A main problem is to characterize those that are, for each k ≥ 3. A hypergraph is linear if each pair of hyperedges intersects in at most one vertex. Every graph is the line graph, not only of some hypergraph, but of some linear hypergraph. (en)
  • Рёберный граф гиперграфа — это граф, множество вершин которого является множеством гиперрёбер гиперграфа, а два гиперребра смежны, если они имеют непустое пересечение. Другими словами, рёберный граф гиперграфа — это граф пересечений семейства конечных множеств. Понятие является обобщением рёберного графа обычного графа. Вопросы о рёберных графах гиперграфов часто являются обобщениями вопросов о рёберных графах обычных графов. Например, гиперграф, все рёбра которого имеют размер k, называется k-униформным' (2-униформный гиперграф — это обычный граф). В теории гиперграфов часто естественно требовать k-униформность. Любой обычный граф является рёберным графом некоего гиперграфа, но если зафиксировать размер ребра k (число точек множества, принадлежащего ребру), не всякий граф является рёберным графом какого-либо k-униформного графа. Основная задача — описать рёберные графы для каждого . Гиперграф называется линейным, если любая пара гиперрёбер имеет в пересечении максимум одну вершину. Любой граф является рёберным графом не только некоторого гиперграфа, но и некоторого линейного гиперграфа. (ru)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 16181442 (xsd:integer)
dbo:wikiPageLength
  • 10071 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1095244061 (xsd:integer)
dbo:wikiPageWikiLink
dbp:last
  • Naik (en)
  • Rao (en)
  • Shrikhande (en)
  • Singhi (en)
dbp:nb
  • yes (en)
dbp:txt
  • yes (en)
dbp:wikiPageUsesTemplate
dbp:year
  • 1980 (xsd:integer)
  • 1982 (xsd:integer)
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • In graph theory, particularly in the theory of hypergraphs, the line graph of a hypergraph H, denoted L(H), is the graph whose vertex set is the set of the hyperedges of H, with two vertices adjacent in L(H) when their corresponding hyperedges have a nonempty intersection in H. In other words, L(H) is the intersection graph of a family of finite sets. It is a generalization of the line graph of a graph. A hypergraph is linear if each pair of hyperedges intersects in at most one vertex. Every graph is the line graph, not only of some hypergraph, but of some linear hypergraph. (en)
  • Рёберный граф гиперграфа — это граф, множество вершин которого является множеством гиперрёбер гиперграфа, а два гиперребра смежны, если они имеют непустое пересечение. Другими словами, рёберный граф гиперграфа — это граф пересечений семейства конечных множеств. Понятие является обобщением рёберного графа обычного графа. Гиперграф называется линейным, если любая пара гиперрёбер имеет в пересечении максимум одну вершину. Любой граф является рёберным графом не только некоторого гиперграфа, но и некоторого линейного гиперграфа. (ru)
rdfs:label
  • Line graph of a hypergraph (en)
  • Рёберный граф гиперграфа (ru)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License