An Entity of Type: country, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org:8891

In algebra and theoretical computer science, an action or act of a semigroup on a set is a rule which associates to each element of the semigroup a transformation of the set in such a way that the product of two elements of the semigroup (using the semigroup operation) is associated with the composite of the two corresponding transformations. The terminology conveys the idea that the elements of the semigroup are acting as transformations of the set. From an algebraic perspective, a semigroup action is a generalization of the notion of a group action in group theory. From the computer science point of view, semigroup actions are closely related to automata: the set models the state of the automaton and the action models transformations of that state in response to inputs.

Property Value
dbo:abstract
  • In algebra and theoretical computer science, an action or act of a semigroup on a set is a rule which associates to each element of the semigroup a transformation of the set in such a way that the product of two elements of the semigroup (using the semigroup operation) is associated with the composite of the two corresponding transformations. The terminology conveys the idea that the elements of the semigroup are acting as transformations of the set. From an algebraic perspective, a semigroup action is a generalization of the notion of a group action in group theory. From the computer science point of view, semigroup actions are closely related to automata: the set models the state of the automaton and the action models transformations of that state in response to inputs. An important special case is a monoid action or act, in which the semigroup is a monoid and the identity element of the monoid acts as the identity transformation of a set. From a category theoretic point of view, a monoid is a category with one object, and an act is a functor from that category to the category of sets. This immediately provides a generalization to monoid acts on objects in categories other than the category of sets. Another important special case is a transformation semigroup. This is a semigroup of transformations of a set, and hence it has a tautological action on that set. This concept is linked to the more general notion of a semigroup by an analogue of Cayley's theorem. (A note on terminology: the terminology used in this area varies, sometimes significantly, from one author to another. See the article for details.) (en)
  • Em álgebra e ciência da computação teórica, uma ação de um semigrupo em um conjunto é uma regra que associa a cada elemento do semigrupo uma transformação do conjunto de tal modo que o produto de dois elementos do grupo (usando a operação binária do semigrupo) é associado com a composta das duas transformações correspondentes. A terminologia transmite a ideia de que os elementos do semigrupo estão agindo como transformações do conjunto. De um ponto de vista algébrico, uma ação de semigrupo é uma generalização da noção de ação de grupo da teoria de grupos. Do ponto de vista da ciência da computação, ações de semigrupos estão intimamente relacionadas aos autômatos: o conjunto de modela os estados do autômato e a ação modela mudanças de estado em resposta à entrada. (pt)
dbo:wikiPageID
  • 1058218 (xsd:integer)
dbo:wikiPageLength
  • 12362 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1047077107 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • Em álgebra e ciência da computação teórica, uma ação de um semigrupo em um conjunto é uma regra que associa a cada elemento do semigrupo uma transformação do conjunto de tal modo que o produto de dois elementos do grupo (usando a operação binária do semigrupo) é associado com a composta das duas transformações correspondentes. A terminologia transmite a ideia de que os elementos do semigrupo estão agindo como transformações do conjunto. De um ponto de vista algébrico, uma ação de semigrupo é uma generalização da noção de ação de grupo da teoria de grupos. Do ponto de vista da ciência da computação, ações de semigrupos estão intimamente relacionadas aos autômatos: o conjunto de modela os estados do autômato e a ação modela mudanças de estado em resposta à entrada. (pt)
  • In algebra and theoretical computer science, an action or act of a semigroup on a set is a rule which associates to each element of the semigroup a transformation of the set in such a way that the product of two elements of the semigroup (using the semigroup operation) is associated with the composite of the two corresponding transformations. The terminology conveys the idea that the elements of the semigroup are acting as transformations of the set. From an algebraic perspective, a semigroup action is a generalization of the notion of a group action in group theory. From the computer science point of view, semigroup actions are closely related to automata: the set models the state of the automaton and the action models transformations of that state in response to inputs. (en)
rdfs:label
  • Semigroup action (en)
  • Ação de semigrupo (pt)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License