dbo:abstract
|
- In mathematics the Karoubi envelope (or Cauchy completion or idempotent completion) of a category C is a classification of the idempotents of C, by means of an auxiliary category. Taking the Karoubi envelope of a preadditive category gives a pseudo-abelian category, hence the construction is sometimes called the pseudo-abelian completion. It is named for the French mathematician Max Karoubi. Given a category C, an idempotent of C is an endomorphism with . An idempotent e: A → A is said to split if there is an object B and morphisms f: A → B,g : B → A such that e = g f and 1B = f g. The Karoubi envelope of C, sometimes written Split(C), is the category whose objects are pairs of the form (A, e) where A is an object of C and is an idempotent of C, and whose morphisms are the triples where is a morphism of C satisfying (or equivalently ). Composition in Split(C) is as in C, but the identity morphism on in Split(C) is , rather thanthe identity on . The category C embeds fully and faithfully in Split(C). In Split(C) every idempotent splits, and Split(C) is the universal category with this property.The Karoubi envelope of a category C can therefore be considered as the "completion" of C which splits idempotents. The Karoubi envelope of a category C can equivalently be defined as the full subcategory of (the presheaves over C) of retracts of representable functors. The category of presheaves on C is equivalent to the category of presheaves on Split(C). (en)
- En mathématiques, l’enveloppe de Karoubi d'une catégorie C est une classification des idempotents de C, au moyen d'une catégorie auxiliaire. Elle porte le nom du mathématicien français Max Karoubi. (fr)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 5674 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
rdfs:comment
|
- En mathématiques, l’enveloppe de Karoubi d'une catégorie C est une classification des idempotents de C, au moyen d'une catégorie auxiliaire. Elle porte le nom du mathématicien français Max Karoubi. (fr)
- In mathematics the Karoubi envelope (or Cauchy completion or idempotent completion) of a category C is a classification of the idempotents of C, by means of an auxiliary category. Taking the Karoubi envelope of a preadditive category gives a pseudo-abelian category, hence the construction is sometimes called the pseudo-abelian completion. It is named for the French mathematician Max Karoubi. Given a category C, an idempotent of C is an endomorphism with . An idempotent e: A → A is said to split if there is an object B and morphisms f: A → B,g : B → A such that e = g f and 1B = f g. (en)
|
rdfs:label
|
- Enveloppe de Karoubi (fr)
- Karoubi envelope (en)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageDisambiguates
of | |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |