dbo:abstract
|
- In der Mathematik bezeichnet der Begriff IP-Menge eine Menge natürlicher Zahlen, die alle endlichen Summen einer unendlichen Menge von natürlichen Zahlen enthält. Die Bezeichnung IP-Menge (IP-set) geht auf Hillel Fürstenberg und zurück; IP steht dabei für „Infinite-dimensional Parallelepiped“. (de)
- In mathematics, an IP set is a set of natural numbers which contains all finite sums of some infinite set. The finite sums of a set D of natural numbers are all those numbers that can be obtained by adding up the elements of some finite nonempty subset of D.The set of all finite sums over D is often denoted as FS(D). Slightly more generally, for a sequence of natural numbers (ni), one can consider the set of finite sums FS((ni)), consisting of the sums of all finite length subsequences of (ni). A set A of natural numbers is an IP set if there exists an infinite set D such that FS(D) is a subset of A. Equivalently, one may require that A contains all finite sums FS((ni)) of a sequence (ni). Some authors give a slightly different definition of IP sets: They require that FS(D) equal A instead of just being a subset. The term IP set was coined by Hillel Furstenberg and Benjamin Weiss to abbreviate "infinite-dimensional parallelepiped". Serendipitously, the abbreviation IP can also be expanded to "idempotent" (a set is IP if and only if it is a member of an idempotent ultrafilter). (en)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 6031 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
gold:hypernym
| |
rdfs:comment
|
- In der Mathematik bezeichnet der Begriff IP-Menge eine Menge natürlicher Zahlen, die alle endlichen Summen einer unendlichen Menge von natürlichen Zahlen enthält. Die Bezeichnung IP-Menge (IP-set) geht auf Hillel Fürstenberg und zurück; IP steht dabei für „Infinite-dimensional Parallelepiped“. (de)
- In mathematics, an IP set is a set of natural numbers which contains all finite sums of some infinite set. The finite sums of a set D of natural numbers are all those numbers that can be obtained by adding up the elements of some finite nonempty subset of D.The set of all finite sums over D is often denoted as FS(D). Slightly more generally, for a sequence of natural numbers (ni), one can consider the set of finite sums FS((ni)), consisting of the sums of all finite length subsequences of (ni). (en)
|
rdfs:label
|
- IP-Menge (de)
- IP set (en)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:knownFor
of | |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is dbp:knownFor
of | |
is foaf:primaryTopic
of | |