An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org:8891

In multilinear algebra, the higher-order singular value decomposition (HOSVD) of a tensor is a specific orthogonal Tucker decomposition. It may be regarded as one generalization of the matrix singular value decomposition. The HOSVD has applications in computer graphics, machine learning, scientific computing, and signal processing. Some key ingredients of the HOSVD can be traced as far back as F. L. Hitchcock in 1928, but it was L. R. Tucker who developed for third-order tensors the general Tucker decomposition in the 1960s, including the HOSVD. The HOSVD as decomposition in its own right was further advocated by L. De Lathauwer et al. in 2000. Robust and L1-norm-based variants of HOSVD have also been proposed.

Property Value
dbo:abstract
  • In multilinear algebra, the higher-order singular value decomposition (HOSVD) of a tensor is a specific orthogonal Tucker decomposition. It may be regarded as one generalization of the matrix singular value decomposition. The HOSVD has applications in computer graphics, machine learning, scientific computing, and signal processing. Some key ingredients of the HOSVD can be traced as far back as F. L. Hitchcock in 1928, but it was L. R. Tucker who developed for third-order tensors the general Tucker decomposition in the 1960s, including the HOSVD. The HOSVD as decomposition in its own right was further advocated by L. De Lathauwer et al. in 2000. Robust and L1-norm-based variants of HOSVD have also been proposed. As the HOSVD was studied in many scientific fields, it is sometimes historically referred to as multilinear singular value decomposition, m-mode SVD, or cube SVD, and sometimes it is incorrectly identified with a Tucker decomposition. (en)
dbo:wikiPageID
  • 20148816 (xsd:integer)
dbo:wikiPageLength
  • 24165 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1124383928 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • In multilinear algebra, the higher-order singular value decomposition (HOSVD) of a tensor is a specific orthogonal Tucker decomposition. It may be regarded as one generalization of the matrix singular value decomposition. The HOSVD has applications in computer graphics, machine learning, scientific computing, and signal processing. Some key ingredients of the HOSVD can be traced as far back as F. L. Hitchcock in 1928, but it was L. R. Tucker who developed for third-order tensors the general Tucker decomposition in the 1960s, including the HOSVD. The HOSVD as decomposition in its own right was further advocated by L. De Lathauwer et al. in 2000. Robust and L1-norm-based variants of HOSVD have also been proposed. (en)
rdfs:label
  • Higher-order singular value decomposition (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License