dbo:abstract
|
- In mathematical finite group theory, a group of GF(2)-type is a group with an involution centralizer whose generalized Fitting subgroup is a group of symplectic type . As the name suggests, many of the groups of Lie type over the field with 2 elements are groups of GF(2)-type. Also 16 of the 26 sporadic groups are of GF(2)-type, suggesting that in some sense sporadic groups are somehow related to special properties of the field with 2 elements. showed roughly that groups of GF(2)-type can be subdivided into 8 types. The groups of each of these 8 types were classified by various authors. They consist mainly of groups of Lie type with all roots of the same length over the field with 2 elements, but also include many exceptional cases, including the majority of the sporadic simple groups. gave a survey of this work. , p.279) gives a table of simple groups containing a large extraspecial 2-group. (en)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 2841 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
gold:hypernym
| |
rdf:type
| |
rdfs:comment
|
- In mathematical finite group theory, a group of GF(2)-type is a group with an involution centralizer whose generalized Fitting subgroup is a group of symplectic type . As the name suggests, many of the groups of Lie type over the field with 2 elements are groups of GF(2)-type. Also 16 of the 26 sporadic groups are of GF(2)-type, suggesting that in some sense sporadic groups are somehow related to special properties of the field with 2 elements. , p.279) gives a table of simple groups containing a large extraspecial 2-group. (en)
|
rdfs:label
| |
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |