An Entity of Type: chemical compound, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org:8891

In category theory, a global element of an object A from a category is a morphism where 1 is a terminal object of the category. Roughly speaking, global elements are a generalization of the notion of "elements" from the category of sets, and they can be used to import set-theoretic concepts into category theory. However, unlike a set, an object of a general category need not be determined by its global elements (not even up to isomorphism). For example, the terminal object of the category Grph of graph homomorphisms has one vertex and one edge, a self-loop, whence the global elements of a graph are its self-loops, conveying no information either about other kinds of edges, or about vertices having no self-loop, or about whether two self-loops share a vertex.

Property Value
dbo:abstract
  • In category theory, a global element of an object A from a category is a morphism where 1 is a terminal object of the category. Roughly speaking, global elements are a generalization of the notion of "elements" from the category of sets, and they can be used to import set-theoretic concepts into category theory. However, unlike a set, an object of a general category need not be determined by its global elements (not even up to isomorphism). For example, the terminal object of the category Grph of graph homomorphisms has one vertex and one edge, a self-loop, whence the global elements of a graph are its self-loops, conveying no information either about other kinds of edges, or about vertices having no self-loop, or about whether two self-loops share a vertex. In an elementary topos the global elements of the subobject classifier Ω form a Heyting algebra when ordered by inclusion of the corresponding subobjects of the terminal object. For example, Grph happens to be a topos, whose subobject classifier Ω is a two-vertex directed clique with an additional self-loop (so five edges, three of which are self-loops and hence the global elements of Ω). The internal logic of Grph is therefore based on the three-element Heyting algebra as its truth values. A well-pointed category is a category that has enough global elements to distinguish every two morphisms. That is, for each pair of distinct arrows A → B in the category, there should exist a global element whose compositions with them are different from each other. (en)
dbo:wikiPageID
  • 14717987 (xsd:integer)
dbo:wikiPageLength
  • 3225 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1030266361 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • In category theory, a global element of an object A from a category is a morphism where 1 is a terminal object of the category. Roughly speaking, global elements are a generalization of the notion of "elements" from the category of sets, and they can be used to import set-theoretic concepts into category theory. However, unlike a set, an object of a general category need not be determined by its global elements (not even up to isomorphism). For example, the terminal object of the category Grph of graph homomorphisms has one vertex and one edge, a self-loop, whence the global elements of a graph are its self-loops, conveying no information either about other kinds of edges, or about vertices having no self-loop, or about whether two self-loops share a vertex. (en)
rdfs:label
  • Global element (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License