An Entity of Type: building, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org:8891

In mathematics, properties that hold for "typical" examples are called generic properties. For instance, a generic property of a class of functions is one that is true of "almost all" of those functions, as in the statements, "A generic polynomial does not have a root at zero," or "A generic square matrix is invertible." As another example, a generic property of a space is a property that holds at "almost all" points of the space, as in the statement, "If f : M → N is a smooth function between smooth manifolds, then a generic point of N is not a critical value of f." (This is by Sard's theorem.)

Property Value
dbo:abstract
  • In der Mathematik werden Eigenschaften von Objekten als generisch bezeichnet, wenn sie in gewisser Weise typisch und nur in pathologischen Sonderfällen unzutreffend sind. Es gibt eine mathematisch klar definierte Verwendung des Begriffes „generisch“. Daneben wird die Bezeichnung aber auch informell verwandt um auszudrücken, dass eine Eigenschaft „meist“ oder „fast immer“ zutrifft. Häufig spricht man von generischen Eigenschaften von Funktionen oder Vektorfeldern, etwa in der oder in der Theorie der Gewöhnlichen Differentialgleichungen und dynamischen Systeme. In diesem Fall betrachtet man die Funktion als Element eines Funktionenraumes und meint, dass die entsprechende Eigenschaft generisch für Elemente dieses Funktionenraumes ist. (de)
  • In mathematics, properties that hold for "typical" examples are called generic properties. For instance, a generic property of a class of functions is one that is true of "almost all" of those functions, as in the statements, "A generic polynomial does not have a root at zero," or "A generic square matrix is invertible." As another example, a generic property of a space is a property that holds at "almost all" points of the space, as in the statement, "If f : M → N is a smooth function between smooth manifolds, then a generic point of N is not a critical value of f." (This is by Sard's theorem.) There are many different notions of "generic" (what is meant by "almost all") in mathematics, with corresponding dual notions of "almost none" (negligible set); the two main classes are: * In measure theory, a generic property is one that holds almost everywhere, with the dual concept being null set, meaning "with probability 0". * In topology and algebraic geometry, a generic property is one that holds on a dense open set, or more generally on a residual set, with the dual concept being a nowhere dense set, or more generally a meagre set. There are several natural examples where those notions are not equal. For instance, the set of Liouville numbers is generic in the topological sense, but has Lebesgue measure zero. (en)
dbo:wikiPageID
  • 12886758 (xsd:integer)
dbo:wikiPageLength
  • 11800 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1090210433 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • In der Mathematik werden Eigenschaften von Objekten als generisch bezeichnet, wenn sie in gewisser Weise typisch und nur in pathologischen Sonderfällen unzutreffend sind. Es gibt eine mathematisch klar definierte Verwendung des Begriffes „generisch“. Daneben wird die Bezeichnung aber auch informell verwandt um auszudrücken, dass eine Eigenschaft „meist“ oder „fast immer“ zutrifft. (de)
  • In mathematics, properties that hold for "typical" examples are called generic properties. For instance, a generic property of a class of functions is one that is true of "almost all" of those functions, as in the statements, "A generic polynomial does not have a root at zero," or "A generic square matrix is invertible." As another example, a generic property of a space is a property that holds at "almost all" points of the space, as in the statement, "If f : M → N is a smooth function between smooth manifolds, then a generic point of N is not a critical value of f." (This is by Sard's theorem.) (en)
rdfs:label
  • Generische Eigenschaft (de)
  • Generic property (en)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License