An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org:8891

In algebra, more specifically group theory, a p-elementary group is a direct product of a finite cyclic group of order relatively prime to p and a p-group. A finite group is an elementary group if it is p-elementary for some prime number p. An elementary group is nilpotent. Brauer's theorem on induced characters states that a character on a finite group is a linear combination with integer coefficients of characters induced from elementary subgroups. More generally, a finite group G is called a p-hyperelementary if it has the extension

Property Value
dbo:abstract
  • In algebra, more specifically group theory, a p-elementary group is a direct product of a finite cyclic group of order relatively prime to p and a p-group. A finite group is an elementary group if it is p-elementary for some prime number p. An elementary group is nilpotent. Brauer's theorem on induced characters states that a character on a finite group is a linear combination with integer coefficients of characters induced from elementary subgroups. More generally, a finite group G is called a p-hyperelementary if it has the extension where is cyclic of order prime to p and P is a p-group. Not every hyperelementary group is elementary: for instance the non-abelian group of order 6 is 2-hyperelementary, but not 2-elementary. (en)
  • Inom matematiken är en p-elementär grupp en av en ändlig cyklisk grupp av relativt prim till p och en . En ändlig grupp är en elementär grupp om den är p-elementär för något primtal p. Varje elementär grupp är . säger att en av en ändlig grupp är en linjär kombination med heltalskoefficienter av karaktärer från elementära delgrupper. (sv)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 31302998 (xsd:integer)
dbo:wikiPageLength
  • 1714 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1114976791 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • Inom matematiken är en p-elementär grupp en av en ändlig cyklisk grupp av relativt prim till p och en . En ändlig grupp är en elementär grupp om den är p-elementär för något primtal p. Varje elementär grupp är . säger att en av en ändlig grupp är en linjär kombination med heltalskoefficienter av karaktärer från elementära delgrupper. (sv)
  • In algebra, more specifically group theory, a p-elementary group is a direct product of a finite cyclic group of order relatively prime to p and a p-group. A finite group is an elementary group if it is p-elementary for some prime number p. An elementary group is nilpotent. Brauer's theorem on induced characters states that a character on a finite group is a linear combination with integer coefficients of characters induced from elementary subgroups. More generally, a finite group G is called a p-hyperelementary if it has the extension (en)
rdfs:label
  • Elementary group (en)
  • Elementär grupp (sv)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License