An Entity of Type: work, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org:8891

In differential geometry, an Ehresmann connection (after the French mathematician Charles Ehresmann who first formalized this concept) is a version of the notion of a connection, which makes sense on any smooth fiber bundle. In particular, it does not rely on the possible vector bundle structure of the underlying fiber bundle, but nevertheless, linear connections may be viewed as a special case. Another important special case of Ehresmann connections are principal connections on principal bundles, which are required to be equivariant in the principal Lie group action.

Property Value
dbo:abstract
  • In differential geometry, an Ehresmann connection (after the French mathematician Charles Ehresmann who first formalized this concept) is a version of the notion of a connection, which makes sense on any smooth fiber bundle. In particular, it does not rely on the possible vector bundle structure of the underlying fiber bundle, but nevertheless, linear connections may be viewed as a special case. Another important special case of Ehresmann connections are principal connections on principal bundles, which are required to be equivariant in the principal Lie group action. (en)
  • En géométrie différentielle, une connexion d'Ehresmann (d'après le mathématicien français Charles Ehresmann qui a le premier formalisé ce concept) est une version de la notion de connexion qui est définie sur des fibrés. En particulier, elle peut être non-linéaire, puisqu'un espace fibré n'a pas de notion de linéarité qui lui soit naturellement adaptée. Cependant, une connexion de Koszul (parfois aussi appelée connexion linéaire) en est un cas particulier. Un autre cas important est celui des (en) sur un fibré principal, auxquelles on impose d'être (en) sous l'action principale du groupe de Lie. (fr)
  • 미분기하학에서 에레스만 접속(Ehresmann接續, 영어: Ehresmann connection)은 임의의 올다발에서, 올의 원소를 주어진 곡선을 따라 "평행하게" 이동하는 방법을 제시하는 구조이다. 구체적으로, 올다발의 접다발에서, 밑공간과 평행한 방향으로 구성되는 부분 벡터 다발이다. 이를 통해 평행 운송과 홀로노미 및 곡률을 정의할 수 있지만, 단면에 대한 공변 미분 연산자를 정의할 수 없다. 벡터 다발의 코쥘 접속이나, 주다발의 주접속의 공통된 일반화이다. (ko)
  • 微分几何中,埃雷斯曼联络(Ehresmann connection)是应用于任意纤维丛的联络概念的一个版本。 特别的是,它可以是非线性的,因为一般的纤维丛上没有合适的线性的概念。 它适用于主丛这一类特殊的纤维丛,通过联络形式表述,在这种情况联络至少是在一个李群的作用下等变。 埃雷斯曼联络以法国数学家夏尔·埃雷斯曼命名。 (zh)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 5731754 (xsd:integer)
dbo:wikiPageLength
  • 22972 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1117699845 (xsd:integer)
dbo:wikiPageWikiLink
dbp:authorlink
  • Ülo Lumiste (en)
dbp:first
  • Ülo (en)
dbp:id
  • c/c025140 (en)
  • c/c025180 (en)
dbp:last
  • Lumiste (en)
dbp:title
  • Connections on a manifold (en)
  • Connection on a fibre bundle (en)
dbp:wikiPageUsesTemplate
dbp:year
  • 2001 (xsd:integer)
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • In differential geometry, an Ehresmann connection (after the French mathematician Charles Ehresmann who first formalized this concept) is a version of the notion of a connection, which makes sense on any smooth fiber bundle. In particular, it does not rely on the possible vector bundle structure of the underlying fiber bundle, but nevertheless, linear connections may be viewed as a special case. Another important special case of Ehresmann connections are principal connections on principal bundles, which are required to be equivariant in the principal Lie group action. (en)
  • En géométrie différentielle, une connexion d'Ehresmann (d'après le mathématicien français Charles Ehresmann qui a le premier formalisé ce concept) est une version de la notion de connexion qui est définie sur des fibrés. En particulier, elle peut être non-linéaire, puisqu'un espace fibré n'a pas de notion de linéarité qui lui soit naturellement adaptée. Cependant, une connexion de Koszul (parfois aussi appelée connexion linéaire) en est un cas particulier. Un autre cas important est celui des (en) sur un fibré principal, auxquelles on impose d'être (en) sous l'action principale du groupe de Lie. (fr)
  • 미분기하학에서 에레스만 접속(Ehresmann接續, 영어: Ehresmann connection)은 임의의 올다발에서, 올의 원소를 주어진 곡선을 따라 "평행하게" 이동하는 방법을 제시하는 구조이다. 구체적으로, 올다발의 접다발에서, 밑공간과 평행한 방향으로 구성되는 부분 벡터 다발이다. 이를 통해 평행 운송과 홀로노미 및 곡률을 정의할 수 있지만, 단면에 대한 공변 미분 연산자를 정의할 수 없다. 벡터 다발의 코쥘 접속이나, 주다발의 주접속의 공통된 일반화이다. (ko)
  • 微分几何中,埃雷斯曼联络(Ehresmann connection)是应用于任意纤维丛的联络概念的一个版本。 特别的是,它可以是非线性的,因为一般的纤维丛上没有合适的线性的概念。 它适用于主丛这一类特殊的纤维丛,通过联络形式表述,在这种情况联络至少是在一个李群的作用下等变。 埃雷斯曼联络以法国数学家夏尔·埃雷斯曼命名。 (zh)
rdfs:label
  • Ehresmann connection (en)
  • Connexion d'Ehresmann (fr)
  • 에레스만 접속 (ko)
  • 埃雷斯曼联络 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License