dbo:abstract
|
- In the mathematical area of graph theory, an undirected graph G is dually chordal if the hypergraph of its maximal cliques is a hypertree. The name comes from the fact that a graph is chordal if and only if the hypergraph of its maximal cliques is the dual of a hypertree. Originally, these graphs were defined by maximum neighborhood orderings and have a variety of different characterizations. Unlike for chordal graphs, the property of being dually chordal is not hereditary, i.e., induced subgraphs of a dually chordal graph are not necessarily dually chordal (hereditarily dually chordal graphs are exactly the strongly chordal graphs), and a dually chordal graph is in general not a perfect graph. Dually chordal graphs appeared first under the name HT-graphs. (en)
- Неориентированный граф G двойственно хордален, если гиперграф его максимальных клик является . Имя происходит из факта, что граф хордален тогда и только тогда, когда гиперграф его максимальных клик двойственен гипердереву. Первоначально эти графы были определены по максимальному соседству и имеют ряд различных описаний. В отличие от хордальных графов свойство двойственной хордальности не наследуется, то есть, порождённые подграфы двойственного хордального графа не обязательно двойственно хордальны (в смысле наследства двойственно хордальные графы являются в точности наследниками строго хордальных графов), и двойственно хордальный граф в общем случае не совершенный.Двойственно хордальные графы появились первоначально под именем HT-графы. (ru)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 8452 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
gold:hypernym
| |
rdfs:comment
|
- Неориентированный граф G двойственно хордален, если гиперграф его максимальных клик является . Имя происходит из факта, что граф хордален тогда и только тогда, когда гиперграф его максимальных клик двойственен гипердереву. Первоначально эти графы были определены по максимальному соседству и имеют ряд различных описаний. В отличие от хордальных графов свойство двойственной хордальности не наследуется, то есть, порождённые подграфы двойственного хордального графа не обязательно двойственно хордальны (в смысле наследства двойственно хордальные графы являются в точности наследниками строго хордальных графов), и двойственно хордальный граф в общем случае не совершенный.Двойственно хордальные графы появились первоначально под именем HT-графы. (ru)
- In the mathematical area of graph theory, an undirected graph G is dually chordal if the hypergraph of its maximal cliques is a hypertree. The name comes from the fact that a graph is chordal if and only if the hypergraph of its maximal cliques is the dual of a hypertree. Originally, these graphs were defined by maximum neighborhood orderings and have a variety of different characterizations. Unlike for chordal graphs, the property of being dually chordal is not hereditary, i.e., induced subgraphs of a dually chordal graph are not necessarily dually chordal (hereditarily dually chordal graphs are exactly the strongly chordal graphs), and a dually chordal graph is in general not a perfect graph. (en)
|
rdfs:label
|
- Dually chordal graph (en)
- Двойственно хордальный граф (ru)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |