An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org:8891

In the mathematical area of graph theory, an undirected graph G is dually chordal if the hypergraph of its maximal cliques is a hypertree. The name comes from the fact that a graph is chordal if and only if the hypergraph of its maximal cliques is the dual of a hypertree. Originally, these graphs were defined by maximum neighborhood orderings and have a variety of different characterizations. Unlike for chordal graphs, the property of being dually chordal is not hereditary, i.e., induced subgraphs of a dually chordal graph are not necessarily dually chordal (hereditarily dually chordal graphs are exactly the strongly chordal graphs), and a dually chordal graph is in general not a perfect graph.

Property Value
dbo:abstract
  • In the mathematical area of graph theory, an undirected graph G is dually chordal if the hypergraph of its maximal cliques is a hypertree. The name comes from the fact that a graph is chordal if and only if the hypergraph of its maximal cliques is the dual of a hypertree. Originally, these graphs were defined by maximum neighborhood orderings and have a variety of different characterizations. Unlike for chordal graphs, the property of being dually chordal is not hereditary, i.e., induced subgraphs of a dually chordal graph are not necessarily dually chordal (hereditarily dually chordal graphs are exactly the strongly chordal graphs), and a dually chordal graph is in general not a perfect graph. Dually chordal graphs appeared first under the name HT-graphs. (en)
  • Неориентированный граф G двойственно хордален, если гиперграф его максимальных клик является . Имя происходит из факта, что граф хордален тогда и только тогда, когда гиперграф его максимальных клик двойственен гипердереву. Первоначально эти графы были определены по максимальному соседству и имеют ряд различных описаний. В отличие от хордальных графов свойство двойственной хордальности не наследуется, то есть, порождённые подграфы двойственного хордального графа не обязательно двойственно хордальны (в смысле наследства двойственно хордальные графы являются в точности наследниками строго хордальных графов), и двойственно хордальный граф в общем случае не совершенный.Двойственно хордальные графы появились первоначально под именем HT-графы. (ru)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 49621181 (xsd:integer)
dbo:wikiPageLength
  • 8452 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1095086149 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdfs:comment
  • Неориентированный граф G двойственно хордален, если гиперграф его максимальных клик является . Имя происходит из факта, что граф хордален тогда и только тогда, когда гиперграф его максимальных клик двойственен гипердереву. Первоначально эти графы были определены по максимальному соседству и имеют ряд различных описаний. В отличие от хордальных графов свойство двойственной хордальности не наследуется, то есть, порождённые подграфы двойственного хордального графа не обязательно двойственно хордальны (в смысле наследства двойственно хордальные графы являются в точности наследниками строго хордальных графов), и двойственно хордальный граф в общем случае не совершенный.Двойственно хордальные графы появились первоначально под именем HT-графы. (ru)
  • In the mathematical area of graph theory, an undirected graph G is dually chordal if the hypergraph of its maximal cliques is a hypertree. The name comes from the fact that a graph is chordal if and only if the hypergraph of its maximal cliques is the dual of a hypertree. Originally, these graphs were defined by maximum neighborhood orderings and have a variety of different characterizations. Unlike for chordal graphs, the property of being dually chordal is not hereditary, i.e., induced subgraphs of a dually chordal graph are not necessarily dually chordal (hereditarily dually chordal graphs are exactly the strongly chordal graphs), and a dually chordal graph is in general not a perfect graph. (en)
rdfs:label
  • Dually chordal graph (en)
  • Двойственно хордальный граф (ru)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License