An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org:8891

Drosophila circadian rhythm is a daily 24-hour cycle of rest and activity in the fruit flies of the genus Drosophila. The biological process was discovered and is best understood in the species Drosophila melanogaster. Other than normal sleep-wake activity, D. melanogaster has two unique daily behaviours, namely regular vibration (locomotor activity) during the process of hatching (called eclosion) from the pupa, and during mating. Locomotor activity is maximum at dawn and dusk, while eclosion is at dawn.

Property Value
dbo:abstract
  • Drosophila circadian rhythm is a daily 24-hour cycle of rest and activity in the fruit flies of the genus Drosophila. The biological process was discovered and is best understood in the species Drosophila melanogaster. Other than normal sleep-wake activity, D. melanogaster has two unique daily behaviours, namely regular vibration (locomotor activity) during the process of hatching (called eclosion) from the pupa, and during mating. Locomotor activity is maximum at dawn and dusk, while eclosion is at dawn. Biological rhythms were first studied in Drosophila. Drosophila circadian rhythm have paved the way for understanding circadian behaviour and diseases related to sleep-wake conditions in other animals, including humans. This is because the circadian clocks are fundamentally similar. Drosophila circadian rhythm was discovered in 1935 by German zoologists, Hans Kalmus and Erwin Bünning. American biologist Colin S. Pittendrigh provided an important experiment in 1954, which established that circadian rhythm is driven by a biological clock. The genetics was first understood in 1971, when Seymour Benzer and Ronald J. Konopka reported that mutation in specific genes changes or stops the circadian behaviour. They discovered the gene called period (per), mutations of which alter the circadian rhythm. It was the first gene known to control behaviour. After a decade, Konopka, Jeffrey C. Hall, Michael Rosbash, and Michael W. Young discovered novel genes including timeless (tim), Clock (Clk), cycle (cyc), cry. These genes and their product proteins play a key role in the circadian clock. The research conducted in Benzer's lab is narrated in Time, Love, Memory by Jonathan Weiner. For their contributions, Hall, Rosbash and Young received the Nobel Prize in Physiology or Medicine in 2017. (en)
dbo:thumbnail
dbo:wikiPageID
  • 56144090 (xsd:integer)
dbo:wikiPageLength
  • 26735 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1105593776 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • Drosophila circadian rhythm is a daily 24-hour cycle of rest and activity in the fruit flies of the genus Drosophila. The biological process was discovered and is best understood in the species Drosophila melanogaster. Other than normal sleep-wake activity, D. melanogaster has two unique daily behaviours, namely regular vibration (locomotor activity) during the process of hatching (called eclosion) from the pupa, and during mating. Locomotor activity is maximum at dawn and dusk, while eclosion is at dawn. (en)
rdfs:label
  • Drosophila circadian rhythm (en)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License