An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org:8891

In algebra the Dixmier conjecture, asked by Jacques Dixmier in 1968, is the conjecture that any endomorphism of a Weyl algebra is an automorphism. in 2005, and independently and Kontsevich in 2007, showed that the Dixmier conjecture is stably equivalent to the Jacobian conjecture.

Property Value
dbo:abstract
  • In algebra the Dixmier conjecture, asked by Jacques Dixmier in 1968, is the conjecture that any endomorphism of a Weyl algebra is an automorphism. in 2005, and independently and Kontsevich in 2007, showed that the Dixmier conjecture is stably equivalent to the Jacobian conjecture. (en)
  • Inom matematiken är Dixmiers förmodan, framlagd av år 1968, en förmodan som säger att varje av en är en automorfism. År 2005 bevisade , och 2007 oberoende och att Dixmiers förmodan är stabilt ekvivalent till . (sv)
dbo:wikiPageID
  • 12929412 (xsd:integer)
dbo:wikiPageLength
  • 1575 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 997252966 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • In algebra the Dixmier conjecture, asked by Jacques Dixmier in 1968, is the conjecture that any endomorphism of a Weyl algebra is an automorphism. in 2005, and independently and Kontsevich in 2007, showed that the Dixmier conjecture is stably equivalent to the Jacobian conjecture. (en)
  • Inom matematiken är Dixmiers förmodan, framlagd av år 1968, en förmodan som säger att varje av en är en automorfism. År 2005 bevisade , och 2007 oberoende och att Dixmiers förmodan är stabilt ekvivalent till . (sv)
rdfs:label
  • Dixmier conjecture (en)
  • Dixmiers förmodan (sv)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageWikiLink of
is dbp:equivalentTo of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License