An Entity of Type: protein, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org:8891

In molecular biology, enzymes containing the cyclodeaminase domain function in channeling one-carbon units to the folate pool. In most cases, this domain acts as a formimidoyltetrahydrofolate cyclodeaminase, which catalyses the cyclisation of formimidoyltetrahydrofolate to methenyltetrahydrofolate as shown in reaction (1). In the methylotrophic bacterium Methylobacterium extorquens, however, it acts as a methenyltetrahydrofolate cyclohydrolase, which catalyses the interconversion of formyltetrahydrofolate and methylenetetrahydrofolate, as shown in reaction (2).

Property Value
dbo:abstract
  • In molecular biology, enzymes containing the cyclodeaminase domain function in channeling one-carbon units to the folate pool. In most cases, this domain acts as a formimidoyltetrahydrofolate cyclodeaminase, which catalyses the cyclisation of formimidoyltetrahydrofolate to methenyltetrahydrofolate as shown in reaction (1). In the methylotrophic bacterium Methylobacterium extorquens, however, it acts as a methenyltetrahydrofolate cyclohydrolase, which catalyses the interconversion of formyltetrahydrofolate and methylenetetrahydrofolate, as shown in reaction (2). (1) 5-formimidoyltetrahydrofolate = 5,10-methenyltetrahydrofolate + NH(3) (2) 10- formyltetrahydrofolate = 5,10-methenyltetrahydrofolate + H(2)O In prokaryotes, this domain mostly occurs on its own, while in eukaryotes it is fused to a glutamate formiminotransferase domain (which catalyses the previous step in the pathway) to form the bifunctional enzyme formiminotransferase cyclodeaminase. The eukaryotic enzyme is a circular tetramer of homodimers, while the prokaryotic enzyme is a dimer. The crystal structure of the cyclodeaminase enzyme from Thermaotogoa maritima has been studied. It is a homodimer, where each monomer is composed of six alpha helices arranged in an up and down helical bundle, forming a novel fold. The location of the active site is not known, but sequence alignments revealed two clusters of conserved residues located in a deep pocket within the dimmer interface. This pocket was large enough to accommodate the reaction product and it was postulated that this is the active site. (en)
dbo:symbol
  • FTCD_C
dbo:thumbnail
dbo:wikiPageID
  • 32840658 (xsd:integer)
dbo:wikiPageLength
  • 4324 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 997180646 (xsd:integer)
dbo:wikiPageWikiLink
dbp:caption
  • crystal structure of formiminotetrahydrofolate cyclodeaminase from thermotoga maritima at 2.80 a resolution (en)
dbp:interpro
  • IPR007044 (en)
dbp:name
  • FTCD_C (en)
dbp:pfam
  • PF04961 (en)
dbp:scop
  • 18000.0
dbp:symbol
  • FTCD_C (en)
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • In molecular biology, enzymes containing the cyclodeaminase domain function in channeling one-carbon units to the folate pool. In most cases, this domain acts as a formimidoyltetrahydrofolate cyclodeaminase, which catalyses the cyclisation of formimidoyltetrahydrofolate to methenyltetrahydrofolate as shown in reaction (1). In the methylotrophic bacterium Methylobacterium extorquens, however, it acts as a methenyltetrahydrofolate cyclohydrolase, which catalyses the interconversion of formyltetrahydrofolate and methylenetetrahydrofolate, as shown in reaction (2). (en)
rdfs:label
  • Cyclodeaminase domain (en)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License