dbo:abstract
|
- Der Kovarianzoperator bezeichnet in der Stochastik einen linearen Operator, der den Begriff der Kovarianz auf unendlich-dimensionale Räume erweitert. Der Begriff wird in der Theorie der und der stochastischen Analysis auf Banach- und Hilberträumen verwendet. (de)
- In probability theory, for a probability measure P on a Hilbert space H with inner product , the covariance of P is the bilinear form Cov: H × H → R given by for all x and y in H. The covariance operator C is then defined by (from the Riesz representation theorem, such operator exists if Cov is bounded). Since Cov is symmetric in its arguments, the covariance operator isself-adjoint. When P is a centred Gaussian measure, C is also a nuclear operator. In particular, it is a compact operator of trace class, that is, it has finite trace. Even more generally, for a probability measure P on a Banach space B, the covariance of P is the bilinear form on the algebraic dual B#, defined by where is now the value of the linear functional x on the element z. Quite similarly, the covariance function of a function-valued random element (in special cases is called random process or random field) z is where z(x) is now the value of the function z at the point x, i.e., the value of the linear functional evaluated at z.
* v
* t
* e (en)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 2022 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
rdf:type
| |
rdfs:comment
|
- Der Kovarianzoperator bezeichnet in der Stochastik einen linearen Operator, der den Begriff der Kovarianz auf unendlich-dimensionale Räume erweitert. Der Begriff wird in der Theorie der und der stochastischen Analysis auf Banach- und Hilberträumen verwendet. (de)
- In probability theory, for a probability measure P on a Hilbert space H with inner product , the covariance of P is the bilinear form Cov: H × H → R given by for all x and y in H. The covariance operator C is then defined by (from the Riesz representation theorem, such operator exists if Cov is bounded). Since Cov is symmetric in its arguments, the covariance operator isself-adjoint. When P is a centred Gaussian measure, C is also a nuclear operator. In particular, it is a compact operator of trace class, that is, it has finite trace.
* v
* t
* e (en)
|
rdfs:label
|
- Kovarianzoperator (de)
- Covariance operator (en)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |